

Neutrinos Electro-Weak interactions and Symmetries

Development of Laser Isotope Separation (LIS) System for ⁴⁸Ca Toward the Study of Neutrinoless Double Beta Decay of CANDLES

<u>A. Rittirong¹*</u>, S. Umehara¹, K. Matsuoka¹, Y. Minami¹, T. Shima¹, S. Yoshida², I. Ogawa³, S. Tokita⁴, H. Okuda⁵, H. Niki^{1,3}, M. Uemukai⁶, and N. Miyanaga^{5,7}

¹RCNP, Osaka Univ., ²Dep. Sci., Osaka Univ., ³Dep. Eng., Univ. Fukui, ⁴ICR, Kyoto Univ., ⁵ILE, Osaka Univ., ⁶Dep. Eng. Osaka Univ., ⁷Inst. Laser Tech.

anawat@rcnp.osaka-u.ac.jp

March 22nd, 2024

Research strategies and requirements

University of Fukui

Proof of principle

- Small scale chamber and single laser system
- TOF, deposition meter, fluorescence

Atomic beam system

- Small scale chamber
- Collimator effect
- Sheet-like atomic beam

Research Center for Nuclear Physics (RCNP)

Collection system

- Collection plate
- Recovery system

Production system of ⁴⁸Ca

- Large scale chamber
- 2W laser \times 6 ports
- High production rate (2 mol/year)
- Automation system

ICR, Kyoto Univ., LIE, and LIT

Laser system

- Single frequency laser
- Power-scalable laser
- InGaN tunable + Tapered SOA
- Long-term operation
- Stable laser system

RCNP, Osaka U + ICRR, Tokyo U.

<u>CA</u>lcium fluoride for studies of <u>N</u>eutrino and <u>D</u>ark matters by <u>L</u>ow <u>E</u>nergy <u>S</u>pectrometer (CANDLES)

Future development

- Stable operation 1/6 port
- Increase the production rate by multiple 6 port units
- Ton scale production
- LISSE

Particle identical to its antiparticle E. Majorana, 1937

Dirac

$$\mathcal{L}_D = -m_D \overline{\nu_R^0} \nu_L^0 + \text{ h. c.}$$

Majorana

$$\mathcal{L}_{m_L} = -\frac{m_L}{2} \overline{(\nu_L^0)^c} \nu_L^0 + \text{ h. c.}$$

Majorana particle

- <u>Violates the Lepton number</u> <u>conservation law</u>
- <u>Particle <-> Anti-particle</u>
- Matter dominated universe

2vββ Ovββ Within standard model Beyond the standard model !!

The 2015 Nobel Prize in Physics Prof. Takaaki Kajita (ICRR) Prof. Arthur B. McDonald (SNO)

Neutrino oscillation

 Prove that neutrino has mass (m_v)

- <u>BG free measurement</u>
- <u>A large amount of double beta decay nuclide</u>
- <u>High energy resolution</u>

- Kamioka mine for zinc and lead
- Kamioka Lab for Underground Sciences
 - 1000 m.w.e. depth
 - 400 km away from Osaka

S. Ajimura, et al. *Physical Review D* 103.9 (2021): 092008.

- Liquid scintillator (LS)
 - 4π active shield(2 m³)
- 62 Large photomultiplier tube
- Shielding system
 - Pb : 10-12cm
 - B₄C sheet : 5mm

Candles

Future CANDLES

	CANDLES III	Next detector system
⁴⁸ Ca Abundance	0.187%	<u>50%</u>
⁴⁸ Ca Weight	0.35 kg	600 kg ~
Energy Resolution	6%	1.0% (required)
$\langle m_{ m u} angle$ sensitivity	500meV	~5 meV
Feature	Cooling CaF2 Low BG	Enrichment of ⁴⁸ Ca Scintillating bolometer

- Improvement of Analysis
 - ²¹²Bi²¹²Po rejection by CNN
 - ²⁰⁸Tl rejection by likelihood analysis
 - Position distribution of ²⁰⁸Tl

- A large amount of ⁴⁸Ca
 - For high sensitivity :
 - Increase by enrichment
- Higher energy resolution
 - To reduce $2\nu\beta\beta$ events

Calcium-48 [N.A. = 0.187%]

- Ca has no gaseous compound.
- ⁴⁸Ca 10 grams/year (By MS) -> 200,000 1,000,000 \$/g

Electromagnetic

Isotope separation technique	Separation Coefficient	Production efficiency (y ⁻¹)	Cost	Limitation
Electromagnetic separator	High	Ten of grams	High	 High power consumption Low productivity
Liquid centrifuge	Middle	Kilograms	Low	 Concentration limit
Industrial isotope separation • Gas Diffusion • Gas Centrifuge	High	Thousands of tons	Low	 Only the gas phase compound is possible Compatible for U
Chemical isotope exchange	Small	Tons	Low	 Extractant loss Development of the cascade enrichment is required
Ion exchange chromatography	Small	Hundred of gram	Low	 Time consumption Low conversion
Laser isotope separation	High	Kilograms	Middle	 Development of the high- power laser, irradiation unit, and collection system

Liquid centrifuge

Gaseous Diffusion Stage

PRESSUR

Research strategies and requirements

University of Fukui ICR, Kyoto Univ., LIE, and LIT **Proof of principle** Laser system Small scale chamber and single laser system Single frequency laser TOF, deposition meter, fluorescence Power-scalable laser SOA, multiple slave laser . Long-term operation Atomic beam system Stable laser system Small scale chamber Collimator effect RCNP, Osaka U + ICRR, Tokyo U. Sheet-like atomic beam CAlcium fluoride for studies of **Research Center for Nuclear Physics (RCNP)** Neutrino and Dark matters by Low Energy Spectrometer (CANDLES) Candles **Collection system** Collection plate **Recovery system** • Production system of ⁴⁸Ca **Future development** Large scale chamber Stable operation 1/6 port 2W laser \times 6 ports Increase the production rate by multiple 6 port units High production rate (2 mol/year) Ton scale production Automation system LISSE

Proof of principle for LIS

Absorption spectrum of Ca at 423nm

Ionization = high enrichment coefficient, low productivity Deflection = moderate enrichment coefficient, high productivity

K Matsuoka et al 2020 J. Phys.: Conf. Ser. 1468 012199

The DEFLECTION method was applicable for mass production

 K_n increases -> smaller angular distribution, high vapor intensity

 K_n increases -> smaller angular distribution, high vapor intensity

Research strategies and requirements

University of Fukui

Proof of principle

- Small scale chamber and single laser system
- TOF, deposition meter, fluorescence

Atomic beam system

- Small scale chamber
- Collimator effect
- Sheet-like atomic beam

Research Center for Nuclear Physics (RCNP)

Collection system

- Collection plate
- Recovery system

Production system of ⁴⁸Ca

- Large scale chamber
- 2W laser \times 6 ports
- High production rate (2 mol/year)
- Automation system

ICR, Kyoto Univ., LIE, and LIT

Laser system

- Single frequency laser
- Power-scalable laser
- InGaN tunable + Tapered SOA
- Long-term operation
- Stable laser system

RCNP, Osaka U + ICRR, Tokyo U.

<u>CA</u>lcium fluoride for studies of <u>N</u>eutrino and <u>D</u>ark matters by <u>L</u>ow <u>E</u>nergy <u>S</u>pectrometer (CANDLES)

Future development

- Stable operation 1/6 port
- Increase the production rate by multiple 6 port units
- Ton scale production
- <u>LISSE</u>

Development of the laser system

Fabry-Perot lasers

Laser performances required for isotope separation

- ✓ Wavelength: ~422.792 nm
- ✓ Frequency stability: <2 MHz rms</p>
- ✓ Power scalability: >100 W (1 unit)
- ✓ Long life time: >30,000 hours
- ✓ Continuous wave (CW)
- ✓ High efficiency
- ✓ Low cost

https://doi.org/10.1364/AO.48.006692

External cavity lasers

- Single longitudinal-mode (Line width: <1 MHz)
- Wavelength tunable

- Multi longitudinal-mode (Wide spectral width)
- Low cost
- Compact
- High efficiency

Development of the laser system

Ogawa et al 2022 J. Phys.: Conf. Ser. 2147 012012 @ICR Kyoto Univ., ILE, and ILT

Experiment of injection locking

A single frequency of slave laser was obtained.

@ICR Kyoto Univ., ILE, and ILT Development of the laser system Spectrum and PHD error signal

Experiment of wavelength stabilization by using PDH method

 $2 \text{ MHz rms} \rightarrow 422.792 \text{xxxxx} \pm 0.000006 \text{ nm}$ < 2MHz rms and long term operation was obtained

Development of the laser system

@ICR Kyoto Univ., ILE, and ILT

200 W laser system can be realized using ~2,500 slave lasers and 1 master lasers.

23 slave lasers for 2W laser power¹⁷

Development of the laser system

M. Uemukai, UGAP 2024

High Power InGaN Tunable Single-Mode Laser for Lase Isotope Separation

Current Work

Near Future

Final Goal

Monolithically Integrated MOPA Device

- No master laser
- No optical alignment
- No optical feedback noise (no isolator)
- No coupling loss
- Not so expensive

Single-frequency and high power laser could be realized.

Research strategies and requirements

University of Fukui

Proof of principle

- Small scale chamber and single laser system
- TOF, deposition meter, fluorescence

Atomic beam system

- Small scale chamber
- Collimator effect
- Sheet-like atomic beam

Research Center for Nuclear Physics (RCNP)

Collection system

- Collection plate
- Recovery system

Production system of ⁴⁸Ca

- Large scale chamber
- 2W laser \times 6 ports
- High production rate (2 mol/year)
- Automation system

ICR, Kyoto Univ., LIE, and LIT

Laser system

- Single frequency laser
- Power-scalable laser
- InGaN tunable + Tapered SOA
- Long-term operation
- Stable laser system

RCNP, Osaka U + ICRR, Tokyo U.

<u>CA</u>lcium fluoride for studies of <u>N</u>eutrino and <u>D</u>ark matters by <u>L</u>ow <u>E</u>nergy <u>S</u>pectrometer (CANDLES)

Future development

- Stable operation 1/6 port
- Increase the production rate by multiple 6 port units
- Ton scale production
- <u>LISSE</u>

Development of the collection system

Crucible, 0.7g Ca

Plate slit Deposition meter

Production chamber

RI Center, Osaka University, Toyonaka, Osaka, Japan

80 mW × 23 lasers = ~ 2W 6 iraadiation ports -> aim for 2 mol/yr

Production chambe

80 mW × 23 lasers = ~ 2W 6 iraadiation ports -> aim for 2 mol/yr Atomic beam production system

First draft

Strategies for mass production

Strategie

What is the required laser power?

Photon energy: 4.7 × 10⁻¹⁹ J @ 423 nm

- Number of photons absorbed by 1 atom: 1,000
- \rightarrow Number of ⁴⁸Ca produced by 1 W laser: 2 × 10¹⁵ sec⁻¹ \rightarrow ~5 g/W/year

>200 W of laser power produces ⁴⁸Ca of 1 kg/year.

Current Soon Near future Future $100 \text{ mW} \rightarrow 2 \text{ W} \rightarrow 2 \text{ kW} \rightarrow 60 \text{ kW}$ (~10 g / year) (~10 kg / year) (~300 kg / year)

SIDE VIEW

First draft

Strategies for mass production

FY2023, Installation, and investigation

- Collection system installation
- Crucible installation
- Monitor and control system
- Laser installation (SOON)
- <u>2W laser power (10 g/year)</u>
- <u>Isotopic composition analysis</u> (TOF, ICP-MS)

FY2024, Production

- <u>Stable operation of 1st port (10</u> grams/year)
- <u>Full operation of six ports</u> (2mol/year)
- Future
 - Automated collection system
 - Scale up the mass production ~ 30 units

300 kg/years production plan

Vacuum chamber (30 units) 6 ports/unit 180 laser units

Power/LD => 1 W Number of LDs/port = 1700 Optical power => 1.7 kW/unit Total optical power: ~2 kW/unit -> ~60kW/30 units

Summary

- LIS for ⁴⁸Ca has been developed to find the cost-effective manner for large-scale production toward the study of 0vββ by CANDLES.
- Development of the LIS
 - Atomic beam system (University of Fukui)
 - Proof-of-principle for LIS
 - Collimator effect and atomic vapor production -> Sheet-like atomic beam
 - Power scalable laser system (ILE, ILT)
 - EC-LD + FP-LD + PD-LDs -> stable and high power laser
 - InGaN tunable + Tapered SOA
 - Collection system (RCNP)
 - Collection material study (SUS, Al, Cu, alloy, etc.)
 - Automated production system
 - Large-scale production system (RCNP)
 - 2mol/years (1st milestone)
 - LISSE -> Shima-san's talk

• We will soon launch the trial production for 10 grams/year (2W).

Collaborators

Candles

Institute for ICRR

Chemical Research

KYOTO UNIVERSITY

大阪大学 OSAKA UNIVERSITY

Institute of Laser Engineering **Osaka University**

Thank you for your attention anawat@rcnp.osaka-u.ac.jp