NEWS colloquium March 22nd, 2024

New method of high-efficiency isotope enrichment with laser

Tatsushi Shima Research Center for Nuclear Physics

CANDLES III Double-beta decay of ⁴⁸Ca

- CANDLES (Kamioka Underground Laboratory)
 - CANDLES III
- Diameter 3m × Height 4m KamLAND Super Kamiokande 3m CANDLES CANDLES III

Two-neutrino mode ($2\nu\beta\beta$)

Neutrino-less mode ($0\nu\beta\beta$)

(within standard model)

(beyond standard model) $m_{\nu} > 0$, $\nu \equiv \nu$ Majorana particle

CANDLES III

CaF₂ crystal (305kg) Liq. Scint. $(2m^3)$ **CANDLES III interioe** 13in. & 20in. PM tubes

天然カルシウムに含まれる ⁴⁸Caは 0.187%(351g)→1トンにしたい!

KamLAND-Zen 400

KamLAND-Zen 800

KamLAND2-Zen

until 2015, 380kg World-best limit $< m_{\beta\beta} > <$ (61-165) meV target 40meV

since 2019, 745kg

future high-resolution plan

target 20meV

Discovery potential; 95% of Inverted ordering 50% of Normal ordering

 $m_3 < < m_1 \sim m_2$

 m_3

Normal ordering Inverted ordering

 $\begin{array}{c} m_2 \\ m_1 \end{array}$

 $m_1 < < m_2 < < m_3$

*m*₃_____

 m_2 _____

 m_1 — — —

Notes.

(1) Normal ordering is preferred by recent data of v-oscillation. F. Simpson et al., JCAP 09 (2022) 006

- (2) Any experiment does not suggest Majorana neutrino. It is preferred only by theoretical "naturalness".
 → Discovery potential of KamLAND2-Zen ~25% ? It is necessary to survey down to ~1 meV.
- (3) Data of $T_{1/2}^{0\nu\beta\beta}$ from different nuclide are useful to separate contributions of mass term and V+A term.

	48 Ca	76 Ge	^{82}Se	⁹⁶ Zr	^{100}Mo	^{116}Cs	^{128}Te	130 Te
$R^{m_{\nu}}_{A}$	0.75	0.51	1.2	3.0	0.47	0.39	0.095	2.1
$\hat{R}^{ar{\eta}}_A$	0.082	0.40	0.19	0.83	0.36	0.064	0.10	2.0
$R_A = R_A^{\eta} / R_A^{m_{\nu}}$	0.11	0.77	0.15	0.28	0.76	0.16	1.1	0.94

T. Fukuyama and T. Sato, JHEP04, 049 (2023)

Conventional method (\rightarrow Anawat-san) ^{1.2} Laser-Isotope separation (LIS) ¹

Ca原子ビーム

To separate ⁴⁸Ca atom from the atomic beam axis, Longitudinal velocity \sim 800 m/s Transvers velocity \sim 10 m/s \rightarrow deflection angle

→ deflection angle ~12.5mrad (~4mm shift for 300mm flight)

To get transverse velocity of 10m/s, 1000 photons of 422.7nm (2.93eV) should be absorbed by one atom \rightarrow To produce 1ton, $6 \times 10^{23} \times 2.93 \times 1000 \times \frac{10^6}{48} = 3.67 \times 10^{31}$ [eV] $= 5.88 \times 10^{12}$ [J] ~ 6 [TJ] is necessary.

Current target quantity is 1 mol/year.

6TJ is needed to produce 1 ton

Cf. Today's beam power of J-PARC 3GeV booster is 879kW.

 \rightarrow Laser power 190kW to produce 1 ton in one year

Kinetic energy of 1 ton mass with transverse velocity of 10m/s is $1/2 \times 1000$ kg $\times (10$ m/s) $^{2}=50$ kJ --- $<10^{-5} \times 6$ TJ

★ Most of the laser power is lost in spontaneous emission.
 ★ To recycle deexcitation photons, it is needed to make deexcitation with not spontaneous emission but stimulated emission.
 ★ To make stimulated emission, guide beam is necessary.
 ★ To shoot the excited atoms with a guide beam, it is necessary to make deexcitation at the known position and time.

$$i\frac{\partial}{\partial t}\begin{pmatrix}\psi_{n}(t)\\\psi_{m}(t)\end{pmatrix} = \begin{pmatrix}E_{n} & \boldsymbol{\mu}_{mn} \cdot \mathbf{E}(t)\\\boldsymbol{\mu}_{mn} \cdot \mathbf{E}(t) & E_{m}\end{pmatrix}\begin{pmatrix}\psi_{n}(t)\\\psi_{m}(t)\end{pmatrix}$$

For
$$\psi_n(0) = 1$$
, $\psi_m(0) = 0$,
 $|\psi_m(t)|^2 = \frac{\Omega^2}{\delta^2 + \Omega^2} \cdot \sin^2 \left(\frac{\sqrt{\delta^2 + \Omega^2}}{2}t\right)$, where $\delta \equiv \omega - \omega_{mn}$, $\Omega \equiv \frac{\mu_{mn} \cdot \mathbf{E}_0}{\hbar}$

If
$$\delta = 0$$
 i.e. $\omega = \omega_{mn}$, $|\psi_m(t)|^2 = \sin^2\left(\frac{\Omega}{2}t\right) = \frac{1 - \cos\Omega t}{2}$

"Rabi oscillation"

Photon absorption and emission occur at definite timing.

Photons emitted by stimulated emission should carry the same energy, momentum and polarization with guide beam.

Required condition for Rabi frequency Ω :

- (1) Stimulated emission rate should be much higher than spontaneous emission rate (~40Hz).
- (2) Harmonics due to pulsing should not overlap with ${}^{1}S_{0}$. resonance frequency of neighboring isotope ($\Delta f \sim 800$ MHz).

(3) Amplitude $\frac{\Omega^2}{\delta^2 + \Omega^2}$ should be close to unity for detuning δ (~80MHz) due to Doppler shift.

Effect of harmonics due to pulsing

Fourier series of square wave

$$f(t) = A\sin(2\pi ft) \cdot H(f_H, t)$$

$$= A\sin(2\pi ft) \cdot \sum_{n=1}^{\infty} \frac{4}{\pi} \frac{1}{2n-1} \sin(2\pi (2n-1) f_H t)$$

$$= A\sin(2\pi ft) \cdot \frac{4}{\pi} \left\{ \sin(2\pi f_H t) + \frac{1}{3} \sin(6\pi f_H t) + \frac{1}{5} \sin(10\pi f_H t) + ... \right\}$$

$$= \left[f \pm f_H, f \pm 3f_H, f \pm 5f_H, \cdots \right]$$

Sideband may excite the neighboring isotope; *Af*=800MHz

$$f_{48} \quad f_L \qquad f_{44} \quad f_h$$

If $\Omega = 190 \text{ [MHz]}$
$$I_{44} = \frac{500^2}{300^2 + 500^2} \cdot \left(\frac{1}{3}\right)^2 = 0.0098$$
$$I_{48} = \frac{500^2}{36^2 + 500^2} = 0.965$$

$$\begin{split} f_{48} - f_{44} &= 800 \; [\text{MHz}] \\ f_L - f_h &= \Omega \\ I_{44} &= \frac{\Omega^2}{\left(f_{44} - f_h\right)^2 + \Omega^2} \cdot \left(\frac{I_h}{I_L}\right) = \frac{\Omega^2}{\left(\Omega - 800\right)^2 + \Omega^2} \cdot \frac{1}{9} < 0.01 - (1) \\ I_{44} &= \frac{\Omega^2}{\left(f_{44} - f_L\right)^2 + \Omega^2} = \frac{\Omega^2}{\delta^2 + \Omega^2} > 0.99 - (2) \\ \text{From (1); } \Omega^2 < 0.09 \left(\left(\Omega - 800\right)^2 + \Omega^2 \right) \implies (1 - 0.18) \Omega^2 < 0.09 \cdot 800^2 - 144\Omega \\ \implies 82\Omega^2 - 9 \cdot 800^2 + 14400\Omega < 0 \implies \left(\Omega + \frac{7200}{82}\right)^2 < \left(\frac{9 \cdot 800^2}{82} + \frac{7200^2}{82^2}\right) \\ \frac{-\sqrt{82 \cdot 9 \cdot 800^2 + 7200^2}}{82} < \Omega + \frac{7200}{82} < \frac{+\sqrt{82 \cdot 9 \cdot 800^2 + 7200^2}}{82} \\ \implies \frac{-7200 - \sqrt{82 \cdot 9 \cdot 800^2 + 7200^2}}{82} < \Omega < \frac{-7200 + \sqrt{82 \cdot 9 \cdot 800^2 + 7200^2}}{82} \\ \implies \frac{-7200 - \sqrt{82 \cdot 9 \cdot 800^2 + 7200^2}}{82} < \Omega < \frac{-7200 + \sqrt{82 \cdot 9 \cdot 800^2 + 7200^2}}{82} \\ \implies -367 \; [\text{MHz}] < \Omega < 191.4 \; [\text{MHz}] \\ \text{From (2); } \Omega^2 > 0.99 \left(\delta^2 + \Omega^2\right) \implies 0.1\Omega > \delta \implies \Omega > 360 \; [\text{MHz}] \\ - \cdot - (1) \; \text{and (2) are not satisfied simultaneously.} \implies \text{Higher priority to Eq. (1)} \end{split}$$

Ω=190 MHz → Laser power of 38.8kW is needed. Assuming finesse of cavity as 10⁵ → 0.388W (peak) ~ 200mW (mean)

$$i\frac{\partial}{\partial t}\begin{pmatrix}\psi_{n}(t)\\\psi_{m}(t)\end{pmatrix} = \begin{pmatrix}E_{n} & \boldsymbol{\mu}_{mn} \cdot \mathbf{E}(t)\\\boldsymbol{\mu}_{mn} \cdot \mathbf{E}(t) & E_{m}\end{pmatrix}\begin{pmatrix}\psi_{n}(t)\\\psi_{m}(t)\end{pmatrix}$$

For
$$\psi_n(0) = 1$$
, $\psi_m(0) = 0$,
 $|\psi_m(t)|^2 = \frac{\Omega^2}{\delta^2 + \Omega^2} \cdot \sin^2 \left(\frac{\sqrt{\delta^2 + \Omega^2}}{2}t\right)$, where $\delta \equiv \omega - \omega_{mn}$, $\Omega \equiv \frac{\mu_{mn} \cdot \mathbf{E}_0}{\hbar}$

If
$$\delta = 0$$
 i.e. $\omega = \omega_{mn}$, $|\psi_m(t)|^2 = \sin^2\left(\frac{\Omega}{2}t\right) = \frac{1 - \cos\Omega t}{2}$

Transition dipole moment μ_{mn} is determined from lifetime of spontaneous emission

$$\begin{split} A &= \frac{\omega_0^3 \mu_{mn}^2}{3\pi\varepsilon_0 \hbar c^3} = \frac{(2\pi)^3 f_0^3 \mu_{mn}^2}{3\varepsilon_0 \hbar \lambda^3} = \frac{8\pi^2}{3\varepsilon_0 \hbar \lambda^3} \mu_{mn}^2 \\ \varepsilon_0 &= 8.854 \times 10^{-12} \, [\text{F/m}] = 8.854 \times 10^{-12} \, [\text{C/V} \cdot \text{m}] \\ \mu_{mn} &= \sqrt{\frac{3\varepsilon_0 \hbar \lambda^3 A}{8\pi^2}} \qquad \hbar = 1.055 \times 10^{-34} \, [\text{J} \cdot \text{s}] = 1.055 \times 10^{-34} \, [\text{C} \cdot \text{V} \cdot \text{s}] \\ &= \sqrt{\frac{3 \times 8.854 \times 10^{-12} \times 1.055 \times 10^{-34} \times (4.23 \times 10^{-7})^3 \times 40}{8\pi^2}} = 1.16 \times 10^{-32} \, [\text{C} \cdot \text{m}] \\ \Omega &\equiv \frac{\mu_{mn} \cdot \text{E}_0}{\hbar} = 190 \, [\text{MHz}] \implies |\text{E}_0| = \frac{\Omega}{\mu_{mn}} \hbar \\ \Omega &= 190 \, [\text{MHz}] , \mu_{mn} \sim 1.16 \times 10^{-32} \, [\text{C} \cdot \text{m}] , \ \hbar = 1.055 \times 10^{-34} \, [\text{J} \cdot \text{s}] \\ \Rightarrow \quad |\text{E}_0| \sim 1.73 \, [\text{MV/m}] \end{split}$$

Energy density; $p = \varepsilon |\mathbf{E}_0|^2 = 8.854 \times 10^{-12} \, [\text{F/m}] \times 2.99 \times 10^{12} \, [\text{V}^2/\text{m}^2]$ = 26.5 [J/m³]

$$p = \frac{P[W]}{cA} = \frac{P[J/s]}{3 \times 10^8 \text{ [m/s]} \times \pi \times (1.25 \times 10^{-3} \text{ [m]})^2} \cong \frac{P}{1472.6} \text{ [J/m^3]}$$

$$\Rightarrow P = 1472.6p [W] = 38.8 [kW] \quad (\text{ for one Ca atom. })$$

$$P = 38.8 \text{ [kW]} \text{ (for one Ca atom.)}$$

$$\Rightarrow I_{photon} = \frac{P}{hv} = \frac{38.8 \times 10^3}{6.626 \times 10^{-34} \times \frac{3 \times 10^8}{4.5 \times 10^{-7}}} = 8.784 \times 10^{22} \text{ [photon/s]}$$

--- sufficient to establish stimulated absorption/emission

Since the photons emitted by deexcitation ware recovered, one can use optical cavity to obtain high-density photons. If the "finesse" (Q-value of the cavity) is as high as 10⁵, required laser power is 388mW.

To produce 1 ton in one year, production rate should be 2.4mol/h = 4×10^{20} ⁴⁸Ca atoms/s If one use 30 units in the same time, 1.3×10^{19} atoms/s/unit << 8.784×10^{22} photons/s

Making $3D \rightarrow 1P_1^0$ transition with 5.632 µm laser and observe 422.7 nm deexcitation photon to detect Rabi oscillation. Intensity of atomic beam

$$\Phi = n_0 \cdot \left(\frac{\gamma k_B T_0}{m}\right)^{1/2} \cdot \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{2(\gamma-1)}}, \quad \gamma = \frac{5}{3} \text{ for mono-atomic molecule}$$
$$= n_0 \cdot \left(\frac{5k_B T_0}{3m}\right)^{1/2} \cdot \left(\frac{3}{4}\right)^2 = \frac{1 \text{ [mol]}}{22400 \text{ [cm}^3\text{]}} \cdot \sqrt{\frac{5 \times 75 \text{ [meV]}}{3 \times 48 \times \frac{938.3 \text{ [MeV]}}{1.0073}} \cdot \frac{9}{16}$$

$$= \frac{1 \text{ [mol]}}{22400 \text{ [cm}^{3}\text{]}} \cdot \frac{9}{16} \cdot 1.672 \times 10^{-6} \times 2.997 \times 10^{10} \text{ [cm/s]}$$
$$= 1.26 \text{ [mol/cm}^{2}/\text{s]} @ 900 \text{ [K]}$$

With $2mm\phi$ nozzle $\rightarrow 0.068$ mol/s =282kg/d (Ca total) = 527g/d (⁴⁸Ca) = 192 kg/yr/unit --- 6 units are necessary to produce 1 ton/yr. Mean velocity of atoms is 868 m/s

Laser specification

(1) wavelength = 457nm
 (2) average power = 400mW
 (3) beam size = 2.5mm
 (4) repetition rate = 190MHz
 (5) pulse width = 2.63 ns
 (6) duty factor = 50%

TOPTICA/DLC DL-pro-HP with DLC TA-SHG pro option

Comparison of cost for ⁴⁸Ca enrichment

(Assuming total efficiency as 64%, so required laser power is not 190kW but 300kW)

	LIS (conventional)	LISSE (new)					
# of units	3000	6					
Lasers & Optics	18 billion JPY	42 million JPY					
Electricity for laser	1.23 billion JPY	0.123 million JPY	Room to further cost reduction				
Electricity for oven	0.345 billion JPY	0.345 billion JPY					
Vacuum chamber	51 billion JPY	100 million JPY					
Total cost	70.58 billion JPY	0.487 billion JPY					
Unit cost	70580JPY/g	487JPY/g					
~1/150							

If we succeed in mass-production of enriched stable isotope, ...

- 1) nuclear physicists do not need to prepare isotopes for targets and ion sources, $0\nu\beta\beta$ and n-nbar oscillation as well.
- 2) we can obtaine raw materials for nuclear medicine.
- 3) supply of ³He for dilution refrigerator and fusion fuel in future
- 4) low-activable material by removing neutron-capturing isotopes
- 5) high-performance neutron shield by enriched ¹¹³Cd
- 6) high-performance material. Ex. 99.998% ¹²C enriched diamond for quantum computer
- 7) Passive tracer for studying material cycle on the Earth
- 8) Nuclear watermark (artificially modified isotopic abundances)

- We propose a new method to efficiently separate stable isotopes with use of the Rabi oscillation induced by laser field.
 Patent: application number 2023-149474
- 2) Test experiment to observe the Rabi oscillation will be performed

in the first half of 2024FY using rubidium vapor and existing apparatuses for ³He spin filter at Nagoya University.

- 3) Technical key points;
- Stability of the resonance of the cavity with Q~10⁵, needs a good feedback system for mirror distances.
- Quality and intensity of atomic beam is crucial.
 Ongoing R&D by CANDLES group (Rittirong, Ogawa) is important!

RI for medicine

⁹⁹Tc^m for SPECT (Single Photon Emission CT)

大腸癌の

骨転移例

⁹⁹Tc decays with $T_{1/2}$ = 6hr emitting 141keV $\gamma \Rightarrow$ measured by γ -camera

⁹⁹Mo is produced via thermal neutron capture.
 ^{nat}Mo target produces other radioactivities.
 → Using ⁹⁸Mo enriched target, only ⁹⁹Mo can be produced.

⁹⁹Moのみ吸着

⇒比放射能が高いことから,吸着させる Mo 量は 微量で可能

【放射化法:gオーダーの吸着】

⁹⁹Mo だけでなく他の Mo 同位体も吸着 ⇒比放射能が低いことから,吸着させる Mo 量は 大量に必要 7days rxposure test at JRR-3 reactor, 1.85MBq/g was produced. To cover domestic demand $(3.7 \times 10^7$ MBq/week),

20tons of ^{nat}Mo or 5tons of ⁹⁸Mo are necessary every week.

Price of ^{nat}Mo; 212JPY/g

→ Production cost of ^{98}Mo should be less than ~700JPY/g.

For enrichment of Mo isotopes...

Atomic beam is not useful because of B.P. as high as 4639°C MoF_6 can be vaporized at 34 °C. Spectral data of MoF_6 is needed!