Double and single- β decays and nuclear structures in the mapped IBM

Kosuke Nomura

Hokkaido University

Osaka, June 2024

Contents

- $\cdot \ \beta \beta$ decays, and the Interacting Boson Model
- \cdot Low-lying structures of even-even and odd-odd nuclei
- $\cdot \ 2 \nu \beta \beta$ decays
- · Single- β decay of neutron-rich N~60 nuclei

Study of $\beta\beta$ decay

- \cdot Nature of neutrinos, test of fundamental symmetries, ... neutrino-less $\beta\beta$ decay
- Experiments: GERDA, NEMO, KamLAND ...
- · Predicted nuclear matrix elements (NMEs) differ by a factor 2-3

Avignone et al., RMP (2008) Agostini et al., RMP (2023) Engel, Menendez, RPP (2017), etc.

Two-neutrino (2 ν) $\beta\beta$ decay

- wealth of experimental data available
- needs calculation of the intermediate states (non-closure approx.)

Theoretical descriptions without the closure approx. by

Interacting Boson ModelYoshida-Iachello, PTEP (2013)QRPASuhonen-Civitarese, Phys. Rep.(1998)
Pirinen-Suhonen PRC (2015)
Simkovic, Smetana, Vogel, PRC (2018), etc.NSMCaurier, Nowacki, Poves, IJMPE (2007)
Yoshinaga et al., PTEP (2018)
Coraggio et al., PRC (2019), etc.

This work

- Consistent description of nuclear structure, β , and $\beta\beta$ decays
- Framework: EDF-mapped IBM
- No closure approximation: calculations for odd-odd nuclei

K. Nomura, Phys. Rev. C 105 (2022) 044301 K. Nomura, arXiv: 2406.02986

K. Nomura, Phys. Rev. C 109 (2024) 034319 M. Homma, and K. Nomura, arXiv: 2404.14624, to appear in PRC

Potential energy surfaces

... calculated with the relativistic Hartree-Bogoliubov method with DD-PC1 energy density functional (EDF) and separable pairing

Computing energy spectra

Intrinsic frame

lab. frame

Beyond-mean-field treatments

- Symmetry projections, GCM
- Collective Hamiltonian
- Interacting Boson Model

Observables: Excitation spectra, EM properties, β , $\beta\beta$ decay?

Mean-field to IBM

Fermionic Bosonic 60 60 40 40 E (MeV) E (MeV) γ (deg) γ (deg) 1.75 1.75 1.50 1.50 20 20 1.25 1.25 -1.00 1.00 0.75 0.75 0.50 0.50 0.25 0.25 0.00 0.00 0.2 0.2 0.3 0.0 0.1 0.3 0.4 0.0 0.1 0.4 ß β

- SCMF energy surface is mapped onto that of the IBM
- Diagonalization of the mapped Hamiltonian yields energy spectra

KN et al. PRL101 (2008) 142501; PRC81 (2010) 044307

Interacting Boson Model (IBM)

- Collective J=0+ and 2+ pairs of valence nucleons \mapsto s, d bosons

 exactly solvable if the Hamiltonian has the dynamical symmetries U(5), SU(3), and O(6)

- Microscopic derivations from nucleonic degrees of freedom

Arima, Iachello (1975) Otsuka, Arima, Iachello (1979) Mizusaki, Otsuka (1997) Nomura, Shimizu, Otsuka (2008)

Neutron-proton IBM (IBM-2)

- building blocks: (s_{ν},s_{π}) and (d_{ν},d_{π}) bosons

- Hamiltonian:

$$\hat{H}_{\text{IBM}} = \epsilon_d (\hat{n}_{d_\nu} + \hat{n}_{d_\pi}) + \kappa \hat{Q}_\nu \cdot \hat{Q}_\pi + \kappa' \hat{L} \cdot \hat{L}$$
pairing-like
quadrupole-quadrupole
(spherical driving)
quadrupole-quadrupole
(deformation driving)
rotational term
$$\hat{Q} = s^{\dagger} \tilde{d} + d^{\dagger} s + \gamma (d^{\dagger} \times \tilde{d})^{(2)}$$

$$Q_{\rho} = s_{\rho}^{\dagger} d_{\rho} + d_{\rho}^{\dagger} s_{\rho} + \chi_{\rho} (d_{\rho}^{\dagger} \times d_{\rho})^{(2)}$$
$$\hat{L} = \sqrt{10} [(d_{\nu}^{\dagger} \times \tilde{d}_{\nu})^{(1)} + (d_{\pi}^{\dagger} \times \tilde{d}_{\pi})^{(1)}]$$

... with 5 parameters

Geometry of the IBM

Energy surface:

$$E_{\rm IBM}(\beta,\gamma) = \langle \phi \,|\, \hat{H}_{\rm IBM} \,|\, \phi \rangle$$

... with boson coherent state

$$|\phi\rangle \propto \Pi_{\rho=\nu,\pi} \left[s_{\rho}^{\dagger} + \beta \cos \gamma d_{\rho,0}^{\dagger} + \frac{1}{\sqrt{2}} \beta \sin \gamma \left(d_{\rho,+2}^{\dagger} + d_{\rho,-2}^{\dagger} \right) \right]^{N_{\rho}} |0\rangle$$

Ginocchio-Kirson (1980)

IBM Hamiltonian is determined by

$$E_{\rm SCMF}(\beta,\gamma)\approx E_{\rm IBM}(\beta,\gamma)$$

KN et al. PRL101 (2008) 142501

Interacting Boson-Fermion-Fermion Model

$$\hat{H}_{\rm IBFFM} = \hat{H}_{\rm IBM} + \hat{H}_{\rm F} + \hat{V}_{\rm BF} + \hat{V}_{\nu\pi}$$

Single-fermion Hamiltonian

Boson-fermion interactions

neutron-proton interaction

$$\hat{\mathcal{V}}_{\nu\pi} = 4\pi [v_{\rm d} + v_{\rm ssd} \boldsymbol{\sigma}_{\nu} \cdot \boldsymbol{\sigma}_{\pi}] \delta(\boldsymbol{r}) \delta(\boldsymbol{r}_{\nu} - r_{0}) \delta(\boldsymbol{r}_{\pi} - r_{0})$$
$$- \frac{1}{\sqrt{3}} v_{\rm ss} \boldsymbol{\sigma}_{\nu} \cdot \boldsymbol{\sigma}_{\pi} + v_{\rm t} \left[\frac{3(\boldsymbol{\sigma}_{\nu} \cdot \mathbf{r})(\boldsymbol{\sigma}_{\pi} \cdot \mathbf{r})}{r^{2}} - \boldsymbol{\sigma}_{\nu} \cdot \boldsymbol{\sigma}_{\pi} \right]$$

lachello, Van Isacker, "The interacting boson-fermion model" (1991)

Boson-fermion interactions

$$\begin{split} \hat{V}_{\rm dyn}^{\rho} &= \sum_{j_{\rho}j_{\rho}'} \gamma_{j_{\rho}j_{\rho}'} (a_{j_{\rho}}^{\dagger} \times \tilde{a}_{j_{\rho}'})^{(2)} \cdot \hat{Q}_{\rho'}, \\ \hat{V}_{\rm exc}^{\rho} &= -\left(s_{\rho'}^{\dagger} \times \tilde{d}_{\rho'}\right)^{(2)} \cdot \sum_{j_{\rho}j_{\rho}'j_{\rho}''} \sqrt{\frac{10}{N_{\rho}(2j_{\rho}+1)}} \beta_{j_{\rho}j_{\rho}'} \beta_{j_{\rho}''j_{\rho}} : \left[(d_{\rho}^{\dagger} \times \tilde{a}_{j_{\rho}''})^{(j_{\rho})} \times (a_{j_{\rho}'}^{\dagger} \times \tilde{s}_{\rho})^{(j_{\rho}')} \right]^{(2)} : + (\text{H.c.}) , \\ \hat{V}_{\rm mon}^{\rho} &= \hat{n}_{d_{\rho}} \hat{n}_{j_{\rho}} , \end{split}$$

with (u,v)-dependent factors:

$$\gamma_{j_{\rho}j'_{\rho}} = (u_{j_{\rho}}u_{j'_{\rho}} - v_{j_{\rho}}v_{j'_{\rho}})Q_{j_{\rho}j'_{\rho}}$$

$$\beta_{j_{\rho}j'_{\rho}} = (u_{j_{\rho}}v_{j'_{\rho}} + v_{j_{\rho}}u_{j'_{\rho}})Q_{j_{\rho}j'_{\rho}}$$

... derived within the generalized seniority

e.g., Schoten, PPNP (1985)

Boson-fermion interactions

exchange terms

direct terms

Building the IBFFM Hamiltonian

... 3 strength parameters for $\hat{V}_{\rm BF}$ fitted for each nucleus (odd-N, odd-Z, and parity) ... 4 strength parameters for $\hat{V}_{\nu\pi}$ fitted for each odd-odd nucleus

- IBFM: KN et al. PRC93 (2016) 054305
- IBFFM-2: KN et al., PRC99 (2019) 034308

Low-lying structure

EDF PESs for even-even nuclei

IBM PESs

¹²⁸Te and ¹²⁸Xe spectra

⁹⁶Zr spectrum

... unable to reproduce N=56 sub-shell effects

⁹⁶Mo spectrum

 \ldots overestimates the 0^+_2 level: a common problem of the mapped IBM

Energy spectra of odd-odd nuclei

Energy spectra of even-even nuclei

Energy spectra of even-even nuclei

Energy spectra of odd-odd nuclei

$2\nu\beta\beta$ decay

Calculation of NME

$$\begin{split} M_{2\nu} &= g_{\rm A}^2 \cdot m_e c^2 \bigg[M_{2\nu}^{\rm GT} - \left(\frac{g_{\rm V}}{g_{\rm A}}\right)^2 M_{2\nu}^{\rm F} \bigg], \qquad \qquad M_{2\nu}^{\rm GT} = \sum_N \frac{\langle 0_F^+ \| t^+ \sigma \| 1_N^+ \rangle \langle 1_N^+ \| t^+ \sigma \| 0_{1,I}^+ \rangle}{E_N - E_I + \frac{1}{2} (Q_{\beta\beta} + 2m_e c^2)}, \\ M_{2\nu}^{\rm F} &= \sum_N \frac{\langle 0_F^+ \| t^+ \| 0_N^+ \rangle \langle 0_N^+ \| t^+ \| 0_{1,I}^+ \rangle}{E_N - E_I + \frac{1}{2} (Q_{\beta\beta} + 2m_e c^2)}, \end{split}$$

GT and Fermi
operators
$$t^{\pm} \longmapsto \hat{T}^{F} = \sum_{j_{\nu}j_{\pi}} \eta_{j_{\nu}j_{\pi}}^{F} (\hat{P}_{j_{\nu}} \times \hat{P}_{j_{\pi}})^{(0)},$$
$$t^{\pm} \sigma \longmapsto \hat{T}^{GT} = \sum_{j_{\nu}j_{\pi}} \eta_{j_{\nu}j_{\pi}}^{GT} (\hat{P}_{j_{\nu}} \times \hat{P}_{j_{\pi}})^{(1)},$$
with \hat{P}_{j} given as one of $A_{j_{\rho}m_{\rho}}^{\dagger} = \zeta_{j_{\rho}} a_{j_{\rho}m_{\rho}}^{\dagger} + \sum_{j_{\rho}'} \zeta_{j_{\rho}j_{\rho}'} s_{\rho}^{\dagger} (\tilde{d}_{\rho} \times a_{j_{\rho}'}^{\dagger})_{m_{\rho}}^{(j_{\rho})}$

$$B_{j_{\rho}m_{\rho}}^{\dagger} = \theta_{j_{\rho}} s_{\rho}^{\dagger} \tilde{a}_{j_{\rho}m_{\rho}} + \sum_{j_{\rho}'} \theta_{j_{\rho}j_{\rho}'} \left(d_{\rho}^{\dagger} \times \tilde{a}_{j_{\rho}'} \right)_{m_{\rho}}^{(j_{\rho})}$$

and their H.C.

(u,v)-dependent forms

Dellagiacoma-lachello (1989), etc.

Coefficients

$$\begin{split} \zeta_{j_{\rho}} &= u_{j_{\rho}} \frac{1}{K'_{j_{\rho}}}, & \text{with factors} \\ \zeta_{j_{\rho}j'_{\rho}} &= -v_{j_{\rho}}\beta_{j'_{\rho}j_{\rho}}\sqrt{\frac{10}{N_{\rho}(2j_{\rho}+1)}} \frac{1}{KK'_{j_{\rho}}}, & K = \left(\sum_{j_{\rho}j'_{\rho}}\beta_{j_{\rho}j'_{\rho}}^{2}\right)^{1/2}, \\ \theta_{j_{\rho}} &= \frac{v_{j_{\rho}}}{\sqrt{N_{\rho}}} \frac{1}{K''_{j_{\rho}}}, & K'_{j_{\rho}} &= \left[1 + 2\left(\frac{v_{j_{\rho}}}{u_{j_{\rho}}}\right)^{2} \frac{\langle(\hat{n}_{s_{\rho}}+1)\hat{n}_{d_{\rho}}\rangle_{0^{+}_{1}}}{N_{\rho}(2j_{\rho}+1)} \frac{\sum_{j'_{\rho}}\beta_{j'_{\rho}j_{\rho}}^{2}}{K^{2}}\right]^{1/2}, \\ \theta_{j_{\rho}j'_{\rho}} &= u_{j_{\rho}}\beta_{j'_{\rho}j_{\rho}}\sqrt{\frac{10}{2j_{\rho}+1}} \frac{1}{KK''_{j_{\rho}}}. & K''_{j_{\rho}} &= \left[\frac{\langle\hat{n}_{s_{\rho}}\rangle_{0^{+}_{1}}}{N_{\rho}} + 2\left(\frac{u_{j_{\rho}}}{v_{j_{\rho}}}\right)^{2} \frac{\langle\hat{n}_{d_{\rho}}\rangle_{0^{+}_{1}}}{K^{2}} \frac{\sum_{j'_{\rho}}\beta_{j'_{\rho}j_{\rho}}^{2}}{K^{2}}\right]^{1/2}, \end{split}$$

... (u,v) amplitudes provided by the DFT

 $\mathcal{Q}_{\beta\beta}$ values

$$Q_{\beta\beta} = 2(m_n - m_p - m_e)c^2 + E_{gs}^I - E_{gs}^F$$

- $Q_{\beta\beta,\text{th}}$: calculated by using the IBM eigenenergy: $E_{\text{gs}} = E_{\text{IBM}}(0_1^+) + E_0$
- $Q_{\beta\beta,ex}$: experimental value

Nucleus	$Q_{\beta\beta,\mathrm{th}}$ (MeV)	$Q_{\beta\beta,\mathrm{ex}}$ (MeV)
⁴⁸ Ca	1.8479	4.2681
⁷⁶ Ge	0.8831	2.0391
⁸² Se	1.6356	2.9979
⁹⁶ Zr	4.1285	3.3560
¹⁰⁰ Mo	2.8338	3.0344
¹¹⁰ Pd	2.9081	2.0171
¹¹⁶ Cd	6.1166	2.8135
¹²⁴ Sn	-0.3795	2.2927
¹²⁸ Te	-0.1784	0.8680
¹³⁰ Te	1.4466	2.5290
¹³⁶ Xe	0.0989	2.4579
¹⁵⁰ Nd	3.3123	3.3714
¹⁹⁸ Pt	1.2895	1.0503

... 1~2 MeV difference

GT and Fermi matrix elements

		0_{1}^{+}				0_{2}^{+}			
	M	$M_{2 u}^{ m GT}$		$M_{2v}^{ m F}$		$M_{2 u}^{ m GT}$		$M_{2 u}^{ m F}$	
Decay	$Q_{etaeta, ext{th}}$	$Q_{etaeta, ext{ex}}$	$Q_{etaeta, ext{th}}$	$Q_{etaeta,\mathrm{ex}}$	$Q_{etaeta, ext{th}}$	$Q_{etaeta,\mathrm{ex}}$	$Q_{etaeta, ext{th}}$	$Q_{etaeta,\mathrm{ex}}$	
48 Ca $\rightarrow {}^{48}$ Ti	0.060	0.042	0.024	0.016	0.325	0.066	-0.142	-0.075	
$^{76}\text{Ge} \rightarrow {}^{76}\text{Se}$	0.040	0.034	-0.007	-0.007	0.097	0.078	-0.085	-0.069	
${}^{82}\text{Se} \rightarrow {}^{82}\text{Kr}$	-0.060	-0.045	0.017	0.015	0.124	0.070	-0.081	-0.064	
96 Zr \rightarrow 96 Mo	0.139	0.154	-0.001	-0.001	0.053	0.063	-0.000	-0.000	
$^{100}Mo \rightarrow {}^{100}Ru$	0.513	0.483	-0.000	-0.000	-0.007	-0.020	0.000	0.000	
110 Pd $\rightarrow ^{110}$ Cd	0.071	0.080	0.000	0.000	-0.052	-0.062	0.000	0.000	
$^{116}Cd \rightarrow {}^{116}Sn$	0.148	0.275	0.001	0.001	0.032	-0.037	-0.001	-0.001	
124 Sn \rightarrow 124 Te	0.123	0.074	-0.054	-0.045	0.345	-0.066	0.016	0.012	
$^{128}\text{Te} \rightarrow {}^{128}\text{Xe}$	-0.139	-0.102	0.006	0.005	0.108	0.032	0.002	0.002	
$^{130}\text{Te} \rightarrow {}^{130}\text{Xe}$	-0.041	-0.037	0.025	0.022	0.043	0.037	-0.019	-0.017	
136 Xe $\rightarrow ^{136}$ Ba	-0.173	-0.102	0.028	0.028	-2.807	0.010	0.009	0.001	
150 Nd \rightarrow 150 Sm	-0.375	-0.369	0.000	0.000	-0.414	-0.390	-0.000	-0.000	
198 Pt \rightarrow 198 Hg	-0.016	-0.016	0.001	0.001	-0.008	-0.010	-0.000	-0.000	

Results are similar between $Q_{\beta\beta,\text{th}}$ and $Q_{\beta\beta,\text{ex}}$ for the $0^+_1 \rightarrow 0^+_1$ decay, and significantly different for the $0^+_1 \rightarrow 0^+_2$ decay

Isospin symmetry breaking

$$\chi_F(0^+) = M_{2\nu}^{\rm F} / M_{2\nu}^{\rm GT}$$

appears when the protons and
neutrons are in the same shells

	$Q_{etaeta, ext{th}}$			
Nucleus	$\chi_F(0_1^+)$	$\chi_F(0^+_2)$		
⁴⁸ Ca	0.401	-0.435		
⁷⁶ Ge	-0.179	-0.874		
⁸² Se	-0.287	-0.650		
⁹⁶ Zr	-0.006	-0.003		
¹⁰⁰ Mo	-0.000	-0.005		
¹¹⁰ Pd	0.000	-0.000		
¹¹⁶ Cd	0.004	-0.021		
¹²⁴ Sn	-0.443	0.046		
¹²⁸ Te	-0.040	0.016		
¹³⁰ Te	-0.104	-0.093		
¹³⁶ Xe	-0.163	-0.003		
¹⁵⁰ Nd	-0.001	0.000		
¹⁹⁸ Pt	-0.060	0.036		

NMEs

Effective NMEs

Comparison with other predictions

Half-lives

	$ au_{1/2}^{(2\nu)}$ (yr), with $Q_{\beta\beta,\mathrm{ex}}$						
Decay	<i>g</i> _A	$g_{ m A, eff}^{ m (I)}$	$g_{\rm A,eff}^{({ m II})}$	Expt. [12]			
48 Ca \rightarrow 48 Ti	$2.50 imes 10^{19}$	$3.43 imes 10^{20}$	1.16×10^{20}	$5.3^{+1.2}_{-0.8} imes 10^{19}$			
$^{76}\text{Ge} \rightarrow {}^{76}\text{Se}$	5.39×10^{21}	1.01×10^{23}	6.14×10^{22}	$(1.88 \pm 0.08) \times 10^{21}$			
${}^{82}\text{Se} \rightarrow {}^{82}\text{Kr}$	8.20×10^{19}	1.61×10^{21}	1.13×10^{21}	$(0.87^{+0.02}_{-0.01}) imes 10^{20}$			
96 Zr \rightarrow 96 Mo	2.37×10^{18}	5.19×10^{19}	$5.12 imes 10^{19}$	$(2.3 \pm 0.2) \times 10^{19}$			
$^{100}Mo \rightarrow {}^{100}Ru$	5.00×10^{17}	1.12×10^{19}	1.23×10^{19}	$(7.06^{+0.15}_{-0.13}) \times 10^{18}$			
$^{100}Mo \rightarrow {}^{100}Ru(0_2^+)$	1.59×10^{22}	3.57×10^{23}	3.90×10^{23}	$6.7^{+0.5}_{-0.4} imes 10^{20}$			
110 Pd $\rightarrow {}^{110}$ Cd	4.40×10^{20}	1.06×10^{22}	1.49×10^{22}				
$^{116}Cd \rightarrow {}^{116}Sn$	1.85×10^{18}	4.59×10^{19}	7.56×10^{19}	$(2.69 \pm 0.09) \times 10^{19}$			
124 Sn $\rightarrow ^{124}$ Te	$6.76 imes 10^{19}$	1.76×10^{21}	3.57×10^{21}				
$^{128}\text{Te} \rightarrow {}^{128}\text{Xe}$	1.31×10^{23}	3.48×10^{24}	$7.86 imes 10^{24}$	$(2.25 \pm 0.09) \times 10^{24}$			
$^{130}\text{Te} \rightarrow {}^{130}\text{Xe}$	$9.85 imes 10^{19}$	2.65×10^{21}	6.31×10^{21}	$(7.91 \pm 0.21) \times 10^{20}$			
136 Xe $\rightarrow ^{136}$ Ba	1.86×10^{19}	5.16×10^{20}	1.45×10^{21}	$(2.18 \pm 0.05) \times 10^{21}$			
150 Nd \rightarrow 150 Sm	7.78×10^{16}	2.30×10^{18}	9.45×10^{18}	$(9.34 \pm 0.65) \times 10^{18}$			
$^{150}\text{Nd} \rightarrow {}^{150}\text{Sm}(0^+_2)$	$5.84 imes 10^{17}$	1.73×10^{19}	$7.10 imes10^{19}$	$1.2^{+0.3}_{-0.2} imes 10^{20}$			
198 Pt \rightarrow 198 Hg	$8.95 imes 10^{22}$	$3.20 imes 10^{24}$	5.09×10^{25}				

$$\left[\tau_{1/2}^{(2\nu)}\right]^{-1} = G_{2\nu} |M_{2\nu}|^2$$

Phase-space factor: Kotila-Iachello (2012) Experiment: Barabash, Universe (2020)

Source of uncertainties

- \cdot SCMF: choice of the EDF, pairing properties, ... etc.
- · IBM/IBFFM: Hamiltonian, model space, ... etc.

Sensitivity to the EDFs

... from the mapped IBM using the Gogny-D1M EDF.

Sensitivity to the EDFs

	0^+_1		0_{2}^{+}			
$M_{2\nu}^{ m GT}$	$M_{2\nu}^{ m F}$	$ M_{2\nu} $	$M_{2 u}^{ m GT}$	$M_{2 u}^{ m F}$	$ M_{2\nu} $	
-0.016	0.001	0.026	-0.008	-0.000	0.012	
	$M_{2\nu}^{\rm GT}$ -0.016 -0.074	$ \begin{array}{ccc} & 0_1^+ \\ \hline M_{2\nu}^{\text{GT}} & M_{2\nu}^{\text{F}} \\ -0.016 & 0.001 \\ -0.074 & 0.000 \end{array} $	$\begin{array}{c c} & 0_1^+ \\ \hline M_{2\nu}^{\text{GT}} & M_{2\nu}^{\text{F}} & M_{2\nu} \\ \hline -0.016 & 0.001 & 0.026 \\ \hline -0.074 & 0.000 & 0.120 \end{array}$	$\begin{array}{c cccc} & 0_1^+ \\ \hline M_{2\nu}^{\text{GT}} & M_{2\nu}^{\text{F}} & M_{2\nu} & \hline M_{2\nu}^{\text{GT}} \\ \hline -0.016 & 0.001 & 0.026 & -0.008 \\ \hline -0.074 & 0.000 & 0.120 & -0.034 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

larger $|M_{2\nu}|$ with Gogny EDF

Pairing interaction in the SCMF

... separable pairing force of finite range

Tian, Ma, Ring (2009)

$$V(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_1', \mathbf{r}_2') = -V\delta(\mathbf{R} - \mathbf{R}')P(\mathbf{r})P(\mathbf{r}')\frac{1}{2}(1 - P^{\sigma}),$$
$$P(\mathbf{r}) = \frac{1}{(4\pi a^2)^{3/2}}e^{-\mathbf{r}^2/4a^2}$$

... strength V=728 MeV fm3 fit to Gogny D1S pairing gap

- compare results with the pairing strength
 - 10 % reduced
 - default
 - 15 % enhanced

Sensitivity to the pairing strength

increased pairing strength favors less pronounced deformation

Influence on IBM parameters

... disagreement with the 0^+_2 states is due to a too large QQ strength, as the SCMF PES exhibits a too pronounced deformation

Derived QQ strength

... QQ strength reduced with the enhanced pairing

Impacts on energy spectra

 0^+_2 and 2^+_2 energy levels are lowered with the increased (+15%) pairing

Unquenched NMEs

Effective NMEs

Single β decay

Mapped IBM applied to β decay

Energy spectra of even-even nuclei

mapped IBM results based on the DD-PC1 EDF

Energy spectra of odd-odd nuclei

$\beta^- \operatorname{decay} \log(\mathrm{ft})$

Significant change of log(ft) around N=60, reflecting a shape phase transition

Phys. Rev. C 109 (2024) 034319

log(ft) as a constraint to IBM-2

M. Homma, K.N., arXiv: 2404.14624

GT running sums

... reduced QQ strength giving smaller GT matrix element for neutron-rich Zr

Comparisons of spectra

improvement over the mapped IBM-2 results for ^AMo (= ^ANb + p - n)

Summary

- · Consistent description of low-lying states and $2\nu\beta\beta$ NME
- Further improvements by assessing model deficiency, coupling to higher-order deformations, shape coexistence...?

 \cdot Extension to the 0ν mode is in progress

Thank you

B(E2)s of parent nuclei

B(E2)s of daughter nuclei

NMEs

		$Q_{etaeta, ext{th}}$			$Q_{etaeta,\mathrm{ex}}$		
Decay	$ M_{2\nu} $	$ M_{2 u}^{({ m I})} $	$ M_{2\nu}^{({ m II})} $	$ M_{2\nu} $	$ M^{(\mathrm{I})}_{2 u} $	$ M^{({ m II})}_{2 u} $	$ M_{2\nu}^{\rm eff} $ [12]
$\overline{{}^{48}\text{Ca} \rightarrow {}^{48}\text{Ti}}$	0.073	0.020	0.034	0.051	0.014	0.024	0.035 ± 0.003
$^{76}\text{Ge} \rightarrow {}^{76}\text{Se}$	0.072	0.017	0.021	0.062	0.014	0.018	0.106 ± 0.004
${}^{82}\text{Se} \rightarrow {}^{82}\text{Kr}$	0.115	0.026	0.031	0.087	0.020	0.024	0.085 ± 0.001
96 Zr \rightarrow 96 Mo	0.225	0.048	0.048	0.249	0.053	0.054	0.088 ± 0.004
100 Mo \rightarrow 100 Ru	0.827	0.174	0.167	0.778	0.164	0.157	0.185 ± 0.002
$^{100}Mo \rightarrow {}^{100}Ru(0^+_2)$	0.011	0.002	0.002	0.032	0.007	0.007	0.151 ± 0.004
110 Pd \rightarrow 110 Cd	0.115	0.023	0.020	0.128	0.026	0.022	
$^{116}Cd \rightarrow {}^{116}Sn$	0.238	0.048	0.037	0.443	0.089	0.069	0.108 ± 0.003
124 Sn \rightarrow 124 Te	0.253	0.050	0.035	0.164	0.032	0.022	
$^{128}\text{Te} \rightarrow {}^{128}\text{Xe}$	0.229	0.044	0.030	0.169	0.033	0.022	0.043 ± 0.003
$^{130}\text{Te} \rightarrow {}^{130}\text{Xe}$	0.091	0.017	0.011	0.081	0.016	0.010	0.0293 ± 0.0009
136 Xe \rightarrow 136 Ba	0.307	0.058	0.035	0.194	0.037	0.022	0.0181 ± 0.0006
150 Nd \rightarrow 150 Sm	0.604	0.111	0.055	0.594	0.109	0.054	0.055 ± 0.003
150 Nd \rightarrow 150 Sm (0_2^+)	0.666	0.122	0.060	0.629	0.116	0.057	0.044 ± 0.005
198 Pt \rightarrow 198 Hg	0.026	0.004	0.001	0.027	0.005	0.001	

data: Barabash, Universe (2020)