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Outline

Results for Nuclear Matrix Elements Mostly of 136Xe Using Nuclear Shell Model in 

Both Closure and Nonclosure Approximations

Neutrinoless double beta (0νββ) decay and its importance in neutrino physics

Method of Nuclear Shell Model to Study 0νββ Decay and Nuclear Matrix 

Elements
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• Neutrinos must be their own antiparticle (Majorana 

particle), which has important implications in BSM physics 

theories. 

• Absolute Majorana Neutrino Mass Can be Calculated 

Which Can Help to Establish Mass Hierarchy of 

Neutrinos. 

• Lepton number violation (ΔL = 2) will be observed. 

Feynman diagram for light neutrino exchange 0νββ

Neutrinoless Double Beta Decay (𝟎𝛎𝛃𝛃)

1937: Ettore 

Majorana predicted a 

that neutrino can be 

its own antiparticle

1939: Wolfgang Furry first predicted Neutrinoless 

double beta decay based on Majorana neutrino

If this process is observed…

But….𝟎𝛎𝛃𝛃 is still unobserved even after 

80 years.

Possible Decaying Isotopes

48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 124Sn , 130Te ,136Xe, 
150Nd

Half life can be in the range > 1026 Years

Rarity of the process:

History

Two-Neutrino Double Beta decay

Observed in 

the experiment

Representation of the energies of the A  76 isobars

Feynman diagram for two-neutrino double beta decay
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Phase Space Factor(𝐆𝟎𝛎): 

1

T1
2

0ν = G0ν Q, Z mββ
2

M0ν 2

Half-life of Neutrinoless Double Beta Decay 𝟎𝛎𝛃𝛃: light-neutrino exchange 

G0ν Q, Z =
1

2 2π 5
GF

4 1

R2
gA

4 න
0

Q

dT1 න
0

π

sinθdθ E1E2 − p1p2cosθ p1p2F E1, Z + 2 F(E2, Z + 2)

T1 = E1 − me, Q = Mi − Mf − 2me

Half-life of 𝟎𝛎𝛃𝛃

Phase space of the nine more favorable double-beta 
decay isotopes. https://doi.org/10.1155/2012/857016
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Majorana neutrino mass(𝐦𝛃𝛃): 

Γ0ν =
1

T1
2

0ν = G0ν Q, Z mββ
2

M0ν 2

Absolute Majorana Neutrino Mass 

mββ = ෍

i

Uei
2 mi

Decay rate of 𝟎𝛎𝛃𝛃

U =
1 0 0
0 c23 s23

0 −s23 c23

×
c13 0 s13e−iδ13

0 1 0
−s13eiδ13 0 c13

×
c12 s12 0

−s12 c12 0
0 0 1

×
e1/2iα1 0 0

0 e1/2iα2 0
0 0 1

νe

νμ

ντ

= U

ν1

ν2

ν3

=

Ue1 Ue2 Ue3

Uμ1 Uμ2 Uμ3

Uτ1 Uτ2 Uτ3

ν1

ν2

ν3

Where, cij = cosθij, sij = sinθij, 

0 ≤ θij ≤ π/2,0 ≤ δ13 ≤ 2π, α1 and α2 are Majorana 

CP-violating phases.

Upper limit for mββ of 36-156 meV has been determined from 0νββ decay experiment 

of 136Xe at KamLAND-Zen ( PHYSICAL REVIEW LETTERS 130, 051801 (2023) ) with lower 

limit of  T1/2
0ν  2.3 × 1026 yr using different nuclear matrix elements  
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Nuclear Matrix Element(NME) 𝐌𝟎𝛎: our research interest

• Nuclear Shell Model (NSM) (We use this)
• Quasiparticle Random Phase Approximation 

(QRPA)
• Projected Hartree Fock Bogliovob Method 

(PHFB)
• Interacting Boson Model 2 (IBM2)
• Energy Density Functional Theory (EDF)

Models of Nuclear Matrix Element calculations

M0ν = MGT
0ν −

gV
2

gA
2 MF

0ν + MT
0ν
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Nuclear shell structure

• F- Fermi
• GT- Gamow-Teller
• T- Tensor
• gV and gA are vector and axial vector constant

Shell structure of nucleus

Mα
0ν = f τ−1τ−2 O12

α i α = (F, GT, T)

0νββ transition operators

• Fermi Type: O12
F = SFHF r = HF(r)

• Gamow Teller type: 

O12
GT = SGTHGT r = σ1. σ2HGT(r)

• Tensor Type: 

     O12
T = STHT r = [3(σ1. ොr)(σ2. ොr) − σ1. σ2]HT(r)
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Approximations of NME calculations: closure vs nonclosure approximation

Nonclosure Approximation

Hα r, Ek
∗ =

2R

π
∗ න

0

∞ 1

q + E0 + Ek
∗ jp qr gα q qdq Where, E0 =

Qββ

2
+ ΔM

Closure Approximation

Hα r =
2R

π
∗ න

0

∞ 1

q + 〈E〉
jp qr gα q qdq One replaces Ek

∗ + E0 = 〈E〉

136Xe→ 136Cs → 136Ba
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Method: Running nonclosure and closure

〈n′l′ H𝛼 r, Ek
∗ nl〉 = න

0

∞

Rn′l′Rnlr
2dr ∗ Hα(r, Ek

∗)Hα r, Ek
∗ =

2R

π
∗ න

0

∞ 1

q + E0 + Ek
∗ jp qr gα q qdq 

Explicit Form of NME in running nonclosure method

E0 + Ek
∗ → 1.74 MeV + Ek

∗

Here….Neutrino potential are calculated explicitly in terms of excitation energy of  136Cs

E0 + Ek
∗ = EClosure approximation

Nonclosure Closure approximation

Mα−running nonclosure
0ν E

= ෍

k1′k2
′ k1k2JJk

෍

Ek
∗ ≤EC

(2Jk + 1)(2Jk + 1)(2J + 1)

× −1 jk1+jk2+J j1 j2 Jk

j4 j3 J
× OBTD(k, f, k1

′ , k2
′ , Jk)

× OBTD k, i, k1, k2, Jk 〈k1
′ k2

′ : J τ−1τ−2𝒪12
0ν k1k2〉

OBTD k, f, k1
′ , k2

′ , Jk =

〈𝑘 𝑎𝑘1

+ ⊗ ෤𝑎𝑘1
′

𝐽𝑘

𝑓〉

2𝐽𝑘 + 1

Schematic diagram to calculate OBTD
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0νββ transition operators

• Fermi Type: 
 O12

F = SFHF r = HF(r)
• Gamow Teller type: 

 O12
GT = SGTHGT r = σ1. σ2HGT(r)

• Tensor Type: 

     O12
T = STHT r = [3(σ1. ොr)(σ2. ොr) − σ1. σ2]HT(r)

Explicit Form of Two Body Matrix Elements

〈np1lp1jp1, np2lp2jp2, Jm
π τ−1τ−2O12

α nn1ln1jn1, nn2ln2jn2Jm
π 〉

= ෍

S′,λ′,S,λ

lp1

1

2
jp1

lp2

1

2
jp2

λ′ S′ Jm

∗×

ln2

1

2
jn2

ln1

1

2
jn1

λ S Jm

×
1

2S + 1
〈lp1lp2λ′

1

2

1

2
S′; Jm S12

α ln2ln1λ
1

2

1

2
S; Jm〉

× np1lp1np2lp2 Hα r nn1ln1nn2ln2

S
P
I
N
P
A
R
T

Relative and COM 
coordinate

Harmonic Oscillator 
Bracket

Two Body Matrix Elements of 𝟎𝛎𝛃𝛃 decay 

Radial Part

np1lp1, np2lp2 Hα r nn1ln1, nn2ln2

= ෍

n′,l′,N′,L′

෍

n,l,N,L

< n′l′, N′L′|np1lp1, np2lp2 >λ′

 
×< n′l′, N′L′|np1lp1, np2lp2 >λ′× 〈n′l′ Hα r nl〉

Individual 
Coordinate
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Neutrino Potential Integral 〈𝐧′𝐥′ 𝐇𝛂 𝐫 𝐧𝐥〉

< n′l′ HType r nl >= න

0

∞

Rn′l′Rnlr
2dr ∗ Hα(r) Where, Hα r =

2R

π
∗ 0׬

∞ 1

q+〈E〉
jp qr gα q qdq 

gF(q) = gV
2 q

gGT(q) =
gA

2 q

gA
2 1 −

2

3

q2

q2+mπ
2 +

1

3

q2

q2+mπ
2

2

 +
2

3

gM
2 q

gA
2 ∗

q2

4mp
2

gT(q) =
gA

2 q

gA
2

2

3

q2

q2+mπ
2 −

1

3

q2

q2+mπ
2

2

+
1

3

gM
2 q

gA
2 ∗

q2

4mp
2

Effects of Finite nucleon size (FNS) and higher order 
current(HOC)

Short Range Correlation Effect (SRC)

N N

Weak interaction is 
not pure V-A type at 
nucleon level

Repulsive

+

a, b, c are SRC parameters

N N

Attractive

f r = −ce−ar2
(1 − br2)

gV q2 = gV/(1 + q2/ΛV
2 )

gA q2 = gA/(1 + q2/ΛA
2 ) gM q2 = μp − μn gV(q2)

FNS HOC+

A general scheme for 
nucleon-nucleon potential
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= ψτ_ gV q2 γμ − gA q2 γμγ5 − igM q2
σμν

2mP
+ gP q2 qμγ5 ψ

gP q2 = 2mPgA(q2)/(q2 + mπ
2 )
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Interacting Nuclear Shell Model and Effective Interactions 

Nuclear Shell structure

136Xe→ 136Cs → 136Ba+ 𝑒− + 𝑒−

136Xe→ 100Sn (Core)+32 valence neutrons and 4 valence protons

136Cs→ 100Sn (Core)+31 valence neutrons and 5 valence protons

jj55-
valence
 space

0h11/2

2s1/2

1d3/2

1d5/2

O
R
B
I
T
S

Valence protons and 
neutrons occupy the above 
orbits of jj55-model space 11

For 136Xe, shell model diagonalization is performed with 
GCN5082 effective interactions to calculate initial, 

intermediate, and final nucleus using shell model code 
KSHELL [Shimizu et al., Comput. Phys. Commun. 2019, 

244, 372–384]

Calculated Wavefunctions are further used to calculate 
the OBTD for nonclosure approach

136Ba→ 100Sn (Core)+ 30 valence neutrons and 6 valence protons

100Sn Core

0g7/2

GCN5082 Hamiltonian



Results for 136Xe 𝟎𝛎𝛃𝛃 Decay 
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Calculated NMEs for 𝟎𝛎𝛃𝛃 decay of 136Xe in Nonclosure Shell Model

M0ν = MGT −
gV

2

gA
2 MF + MT

GT Type NME dominates over Fermi and Tensor Type Matrix Elements

The SRC effects are most visible for Miller-Spencer type SRC
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Comparison of Nonclosure and Closure NMEs in Different Models

[29] M. Horoi and A. Neacsu, Phys. Rev. C 98, 035502 (2018)
[43] A. Neacsu and M. Horoi, Phys. Rev. C 91, 024309 (2015).
[24] J. Menendez, A. Poves, E. Caurier, and F. Nowacki, Nucl. Phys. A 818, 139 
(2009)
[52] J. Hyv¨arinen and J. Suhonen, Phys. Rev. C 91, 024613 (2015).
[53] A. Faessler, M. Gonz´alez, S. Kovalenko, and F. Simkovic, Rev. D 90, 096010 
(2014).
[28] C. F. Jiao, M. Horoi, and A. Neacsu,Phys. Rev. C 98, 064324 (2018).
[54] J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 91, 034304 (2015).
[13] T. R. Rodr´ıguez and G. Mart´ınez-Pinedo, Phys. Rev. Lett. 105, 252503 
(2010).
[15] J. M. Yao, L. S. Song, K. Hagino, P. Ring, Phys. Rev. C 91, 024316 (2015).

We see 6-18% difference in nonclosure and closure 
NME in shell model 

The Difference may arise from choice of 
Hamiltonian and closure energy used in closure 
approximation 

Overall there for different nuclear models NME 
variation is large and it is an open problem to 
explore

14
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Contributions of Individual Spin-Parity of Intermediate Nucleus on 𝟎𝝂𝜷𝜷 NME

136Cs is the Intermediate Nucleus for 0𝜈𝛽𝛽 
decay of 136Xe 

Partial GT NMEs are all positive and Fermi 
NMEs are all negative for different allowed 
spin-parity of 136Cs. Tensor NMEs have both 
positive and negative contributions

The 1+ state contributes most on GT NME 2+ 
for Fermi NMEs. 
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Finding Optimal Closure Energy Where Nonclosure and Closure NME Overlaps

The goal here is to find appropriate 
closure energy for which nonclosure 
and closure NME overlaps

Optimal Closure Energies are 4.1, 3.7, 
Near 0, and 3.7 MeV for Fermi, GT, 
Tensor, and Total NMEs respectively. 

Determined Optimal Closure Energy 
Can Help to Achieve a Accurate NME 
Using Closure Approach Which Requires 
Lesser Computational Resources 

16



Reproducing Nonclosure NMEs Using Closure Approach With Optimal Closure Energy With 
Smaller Computational Resources

Here we show that if we use determined 
optimal closure energy, we can accurately 
reproduce nonclosure NMEs using closure 
approach across all number of 
intermediate states considered with much 
smaller computational power

Here solid lines are closure NMEs and 
dotted lines are nonclosure NMEs

In addition, we showed how the 
convergence depends on choice of 
number of states for each spin-parity of 
136Cs. Here we could consider up to 200 
states for each spin-parity, with 
reasonable accuracy. 
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Studying Non-standard Mechanisms of 𝟎𝝂𝜷𝜷 Decay Using Nonclosure Approach

Left-Right Symmetric Mechanisms of 0𝜈𝛽𝛽 Decay (Will 
Discuss this Briefly) 

Supersymmetric Particles Exchange Mechanisms of 0νββ Decay 

Apart from standard light neutrino-exchange mechanisms, the other popular 
BSM physics mechanisms are 

Effective Field Theory Approach of 0νββ Decay 

Extra Dimensional Mechanisms of 0νββ Decay 
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Nuclear Matrix Element Calculation for 𝟎𝛎𝛃𝛃 Decay in Left-Right Symmetric 
Model

If we consider all the diagrams of 𝟎𝝂𝜷𝜷 decay in 
left-right symmetric model, the decay rate can be 
written as 

Nuclear Matrix Element (NME) (Our Interest) 

…Similarly for other terms 
of decay rate equation

Phase Space Factors which are Calculated 
Accurately
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Nuclear Matrix Elements Calculation in Left-Right Symmetric Model

NME of 𝟎𝛎𝛃𝛃 decay is written as 

Transition Operators of 𝟎𝛎𝛃𝛃 in left-Right Symmetry 

Nuclear Matrix Element are Calculated in Shell Model as 

Shell Model Calculation for 136Xe 𝟎𝛎𝛃𝛃 Decay 
G

C
N

5
0

8
2

 H
am

ilto
n

ian

100Sn as inert Core 
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Study of 𝛌 mechanism of 𝟎𝛎𝛃𝛃 in Nuclear Shell Model

The Feynman diagrams for light mββ mechanism

The Feynman diagrams for λ mechanism

Motivation of Studying λ mechanism

(I) Shell Model was used in paper for closure 
approximation to study λ mechanism of 0νββ

(II) Exploited the revised formalism for λ mechanism

(III) QRPA calculations with revised formalism for λ 
mechanism
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Decay rate and NME for 𝛌 mechanism

Radial neutrino potentialsDecay Rate

NMEs

Transition Operator

Nonclosure approximation

Closure approximation

Revised Approach

(Old)

(Revised)
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T1
2

0ν −1
= ην

2Cmm + ηλ
2Cλλ + ηνηλ cos ψ Cmλ

Cmm = gA
4 Mν

2G01,
Cmλ = −gA

4 Mν M2−G03 − M1+G04 ,

Cλλ = gA
4 (M2−

2 G02 +
1

9
 M1+

2 G011 −
2

9
M1+M2−G010)

Mν = MGT −
1

gA
2 MF + MT

Mνω = MωGT −
1

gA
2 MωF + MωT

M1+ = MqGT + 3
1

gA
2 MqF − 6MqT

M2− = Mνω −
1

9
M1+ 

Mα = ⟨f|τ1−τ2− 𝒪12
α |i⟩

𝒪12
GT,ωGT,qGT

= τ1−τ2− σ1. σ2 HGT,ωGT,qGT (r, Ek)

𝒪12
F,ωF,q𝐹

= τ1−τ2−HF,ωF,qF (r, Ek)

𝒪12
T,ωT,qT

= τ1−τ2− 𝑆12 HT,ωT,qT (r, Ek)

Hα r, Ek =
2R

π
න

0

∞ fα q, r dq

q + Ek + (Ei + Ef)/2

[Ek + (Ei + Ef)/2]→ ⟨E⟩

Hα r, Ek =
2R

π
න

0

∞ fα q, r dq

q + ⟨E⟩

fqGT q, r =
1

1 +
q2

ΛA
2

4 qj1(qr)

fqGT q, r

= ቆ

ቇ

gA
2 q2

gA
2 q + 3

gP
2 q2

gA
2

q5

4mN
2

+
gA

2 q2 gP
2 q2

gA
2

q3

mN
rj1(qr)



Summary and OutlooksResults for 𝛌 mechanism of 𝟎𝛎𝛃𝛃 decay of 48Ca
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Results for 𝛌 mechanism of 𝟎𝛎𝛃𝛃 decay of 82Se

We some large enhancement of 
𝐌𝐪𝐆𝐓 type NME for including the 

recent nucleon current term as 
mentioned earlier
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Results: Contribution of different Spin-Parity States of Intermediate Nucleus 136Cs 
to the Nuclear Matrix Element of 136Xe 𝟎𝛎𝛃𝛃 in Left-Right Symmetric Model
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Additional Methods of NME Calculations in Shell Model
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Method: Pure Closure 

Mα−closure
0ν = f τ−1τ−2 O12

α i = ෍

J,k1
′ k2

′ k1k2

TBTD f, i, J k1
′ k2

′ : JT τ−1τ−2 O12
α k1k2: JT A

One of the Simplest that Requires Smallest Computational Resources is Pure 
closure Method

Pure Closure Method Only Requires Initial and Final States. So No Intermediate 
States are Required to Calculated 

Shell Model Code Like KSHELL Provides Option for TBTD Calculations
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Final Matrix Elements in Closure method

Method: The 𝟎𝛎𝛃𝛃 decay through (n-2) Channel

Two Nucleon Transfer Amplitudes (TNA)

TNA f, m, k1
′ , k2

′ , Jm =
〈f A+ k1

′ , k2
′ , J m〉

2J0 + 1

Mα−closure
0ν = f τ−1τ−2 O12

α i

= ෍

Jm,k1
′ k2

′ k1k2

TNA f, m, k1
′ , k2

′ , Jm TNA m, i, k1
′ , k2

′ , Jm k1
′ k2

′ : JT τ−1τ−2 O12
α k1k2: JT A

28

136Xe→ 134Xe → 136Ba +e−+e−

Shell model codes KSHELL and NushellX@MSU both provides option for TNA calculations



Finally Some Results of 136Xe Two-Neutrino Double Beta Decay
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Two Neutrino Double Beta Decay Study of 136Xe in Shell Model

Feynman Diagram for Two Neutrino Double Beta (2νββ) Decay 
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Summary

We discussed some results for 0νββ decay 136Xe, 48Ca, and 82Se 

In future we plan to explore other beyond the standard model physics 
mechanisms of 0νββ decay  such as left-right symmetric mechanisms

Study of 0νββ decay is important to know the Majorana nature of neutrino and 
absolute neutrino mass

Our interest is to calculate nuclear matrix elements in nuclear shell model using 
both closure and nonclosure approximation
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Useful References for Nonclosure Approach of NME Calculations
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