Gamma-ray and Neutrino Emission in X-ray binaries: The Role of Jet Cooling, Photo-absorption, and Black Hole Spin

Theodora Papavasileiou, Ph.D.

Department of Physics, University of Ioannina, Greece

Department of Informatics, University of Western Macedonia, Greece

Neutrinos Electro-Weak interactions and Symmetries

Colloquium July 18th, 2025

University of Ioannina

Outlook

- Introduction X-ray Binary systems (XRBs)
- Accretion disk and XSPEC models
- Detection of cosmic neutrinos & VHE γ -rays

• Emission from relativistic jets: (i) Leptonic emission mechanisms, (ii) Hadronic interactions

- Results High-energy gamma-rays and neutrinos from XRBs
 - Q: Can photo-absorption and particle cooling explain the lack of VHE observations?
 - Q: What is the jet configuration comprising an optimized particle accelerator?
- Results Calculating relativistic disk spectra
 - Q: Is there a simpler and more time-conserving way to obtain relativistic spectra from accretion disks?
- Summary & conclusions

0

0

0

What are X-ray Binary systems?

Systems consisting of a **compact object** (black hole or neutron star) devouring mass out of its **stellar companion**

1013 cm

- <u>Accretion disk</u>: forms out of the companion's mass at the equatorial plane
 - Some of the brightest X-ray emission sources in our Galaxy
 - Temperature of $\sim 10^6 10^7$ K near the black hole
 - Size $10^6 10^{11}$ cm & luminosity $L < L_{Edd} \approx 10^{39}$ erg/s

• <u>Relativistic jets</u>: plasma ejections perpendicularly to the disk

- Collimated and accelerated by the system's magnetic field
- Form observable radio lobes at distances $\sim 10^{17}$ cm
- Powerful particle accelerators
- <u>Corona</u>: spherical plasma region around the black hole
 - Consists mainly of thermal electrons
 - Up-scatters photons from the disk

Why X-ray binaries?

• <u>Similarities to AGNs</u>: XRBs are scaled-down galactic centers featuring supermassive BHs

- Some of the most luminous objects in the Universe
- Accelerate the most energetic cosmic rays reaching the Earth
- Offer significant insights into the evolution of the Universe
 <u>But with</u>:
- Much smaller distance than the nearest AGNs
- Much shorter evolution timescale

• Providing valuable insights on:

- The black hole including its mass, spin, and evolution
- The jet collimation and acceleration mechanisms
- The accretion process and formation of the disk
- The transition between different spectral states
- The disk-corona dynamics

Accretion Disk-Thin Disk Models

	ADAF		Shakura-Sunyaev "Standard" disk		Slim disk
•	Sub-Eddington accretion,	•	Very sub-Eddington accretion, very high opacity	•	Nearly Eddington accretion,
•	Very radiatively inefficient	•	High luminosity, high efficiency	•	Radiatively much less efficient than the "Standard" disk
•	Cooled by advection instead of	•	of radiative cooling Keplerian rotation	•	Cooled by advection and radiation
•	Sphere or "corona"-like shape	•	Spectra similar to a sum of black- bodies	•	Slightly different than Keplerian
•	$R_{in} < R_{ISCO}$	•	$R_{in} = R_{ISCO}$	•	Dynamically, thermally and
		•	The best known and studied theoretical model	•	viscously stable $R_{in} < R_{ISCO}$

L

 $\rightarrow \dot{M}/\dot{M}_{Edd}$

Emission from the Accretion Disk

Shakura-Sunyaev "Standard" disk

III. Detection of cosmic neutrinos & VHE γ-rays

Detection

Neutrino observatories

- Super-Kamiokande (Super-K) is one of the most important and influential neutrino detectors in the world
- □ Location: 1 km under Mt. Ikenoyama, Gifu Prefecture, Japan
- □ Sensitivity: 10 *MeV* to a few hundred *GeV*

 KM3NeT is the European counterpart to the IceCube Neutrino Observatory at the South Pole
 Location: 2.5–3.5 km below sea level, Mediterranean Sea, Offshore Capo Passero, Sicily (Italy) (ARCA subdetector for cosmic neutrinos)
 Sensitivity: 1 – 10⁴ TeV

Neutrino observatories

- IceCube is the world's largest neutrino detector and one of the most important instruments for highenergy astrophysics.
- □ Location: 2.5 km below the ice, Amundsen-Scott South Pole Station, Antarctica
- □ Sensitivity: $0.01 10^4 TeV$ (peak at ~10 TeV for muon neutrinos)
- □ Upgrade: IceCube-Gen2 will extend the detector's volume to 8 km^3 , increasing the detection rate of cosmic neutrinos by a factor of 10 and the sensitivity at the highest energies by 2 orders of magnitude

Detection

Very High-Energy γ-ray telescopes

- MAGIC is one of the most advanced instruments for observing VHE γ-rays from astrophysical sources
 Location: Roque de los Muchachos Observatory, La Palma, Canary Islands, Spain
- □ Sensitivity: 0.025 30 *TeV*

□ Location: Khomas Highland, Namibia, southern Africa

Sensitivity: 0.03 – 100 *TeV*

□ Upgrade: The Cherenkov Telescope Array (CTA) is the next-generation ground-based γ -ray observatory designed to be the most sensitive instrument for VHE γ -ray astronomy to date. The sensitivity is expected to be 5–10× better than current MAGIC, H.E.S.S., etc. in the range 0.02 – 300 *TeV*

IV. Lepto-hadronic jet model

Relativistic Jets

Fundamental assumptions of the jet model

•
$$\rho_k = \rho_m \longrightarrow B(z) = \sqrt{8\pi\rho_k}$$

• $L_k = 0.1L_{Edd}$
• $L_p = aL_e$
• $t_{acc}^{-1} = \eta \frac{ceB}{E}$
• $L_{rel} = L_p + L_e = q_{rel}L_k$
• $L_e = \frac{0.1q_{rel}L_{Edd}}{a+1}$

Jet particle distributions

Transport equation

$$\frac{\partial N(E,z)b(E,z)}{\partial E} + t^{-1}N(E,z) = Q(E,z)$$

•
$$Q(E,z) = Q_0 \left(\frac{z_0}{z}\right)^3 \frac{\Gamma_b^{-1} (E - \beta_b \cos i\sqrt{E^2 - m^2 c^4})^{-2}}{\sqrt{\sin^2 i + \Gamma_b^2 (\cos i - \beta_b E / \sqrt{E^2 - m^2 c^4})^2}}$$

• Particle energy-loss rate: $h(E,z) = -Et_z^{-1}$

Particle energy-loss rate:
$$b(E, z) = -Et_{loss}^{-1}$$
 Cooling rates: $t_{loss}^{-1} = t_{sync}^{-1} + t_{pp}^{-1} + t_{ad}^{-1}$

• Particle number reduction rate: $t^{-1} = t_{esc}^{-1} + t_{dec}^{-1}$, $t_{esc}^{-1} \approx \frac{c}{z_{max} - z}$

$$N(E,z) = \frac{1}{|b(E)|} \int_{E}^{E_{max}} Q(E',z) e^{-\tau(E,E')} dE',$$

$$\tau(E,E') = \int_{E}^{E'} \frac{dE''t^{-1}}{|b(E'')|}$$

Leptonic & hadronic emission mechanisms

Photo-absorption due to γ - γ interactions

Accretion disk thermal emission

$$\tau_{disk} = \int_{0}^{\infty} \int_{0}^{2\pi} \int_{R_{in}}^{R_{out}} \int_{\epsilon_{min}}^{\infty} \frac{dn}{d\epsilon d\Omega} (1 - \cos\theta_{0}) \sigma_{\gamma\gamma} \frac{\rho \cos\omega}{D^{3}} RDRd\varphi \, d\epsilon dR$$

Stellar companion blackbody spectrum

$$\tau_{star} = \int_{0}^{\infty} \int_{\epsilon_{min}}^{\infty} \frac{dn_{ph}}{d\epsilon} (1 - \cos \theta_{0}) \sigma_{\gamma\gamma} d\epsilon dl$$
$$\epsilon_{min} = \frac{2m_{e}^{2}c^{4}}{E_{\gamma}(1 - \cos \theta_{0})}$$
$$\bullet I = I_{0}e^{-\tau}$$

Corona hybrid model

- We model the corona as a spherical region of radius R_c and optical depth τ_{cor} filled with thermal electrons described by a Maxwell-Juttner distribution
- In the thermal corona, there is an injection of a power-law distribution of non-thermal electrons

Non-thermal part

- $N_{nth} = \frac{n_0(-p_e+1)h_{cor}}{\gamma_{max}^{-p_e+1} \gamma_{min}^{-p_e+1}} \frac{\gamma^{-p_e}}{m_e c^2}$
- $p_e \longrightarrow$ power-law index
- $h_{cor} \longrightarrow$ ratio of the non-thermal to thermal particles
- $\gamma_{min} \longrightarrow$ minimum energy of the injected electrons
- $\gamma_{max} \longrightarrow$ maximum energy of the injected electrons

Gauss-Legendre numerical integration

□ Gauss-Legendre quadrature is a form of the Gaussian rule for integrating a function over the interval [-1, 1] *n*: number of sample points

$$I = \int_{-1}^{1} f(x) dx \approx \sum_{i=1}^{n} w_i f(x_i)$$

n: number of sample points x_i : integration points- roots of the nth Legendre polynomial \longrightarrow increasing n \longrightarrow higher accuracy

 w_i : quadrature weights

 \Box An interval modification to [a, b] gives the integration approximation as

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \sum_{i=1}^{n} w_{i}f\left(\frac{b-a}{2}\xi_{i} + \frac{a+b}{2}\right),$$

where $w_{i} = \frac{2}{(1-x_{i})^{2}P'_{n}(x_{i})^{2}}$, $P_{n}(x)$: Legendre polynomials

□ The µQSED code upgrades upon the numerical integration method by employing a segmental application of the Gauss-Legendre quadrature, increasing the accuracy and reducing the execution time of the computational process

□ GL on the initial interval with n = 100 → 172.8 min ☑ GL on multiple intervals with n = 10 → 2.24 min

V. <u>Results</u>: High-energy γ-rays and neutrinos from XRBs

Lepto-hadronic distributions in the relativistic jets

Pions & muons emerging from proton collisions

High-energy γ-ray emission from BH candidates

 10^{6}

 10^{7}

 10^{8}

High-energy γ-ray emission from BH candidates

Absorbed photon fluxes from the expanded jet length

Papavasileiou Th., Kosmas O., Sinatkas I. 2023, A&A, 673, A162

Expected TeV emissions from nearby XRBs

Parameter sensitivity in the lepto-hadronic jet model

Configuration of a sufficient particle accelerator

Two cases of relativistic jet configurations:
 A. an efficient particle accelerator

B. a radiatively-inefficient jet

VI. <u>Results</u>: A novel approach to calculating relativistic disk spectra

Kerr Metric Properties

 $r > R_{mb}$: marginally bound orbits $r > R_{ms}$: marginally stable orbits $R_g = \frac{GM_{bh}}{c^2} \rightarrow$ gravitational radius 	 <i>R_{ms}</i> is called <i>R_{ISCO}</i> → Innermost Stable Circular Orbit 0 ≤ α_* ≤ 1 → dimensionless spin parameter In fact, α_* ≤ 0.998 			
Kerr metric in General Relativity	Non-rotating "Schwarzschild" black holes			
$\square R_{mb} = \left(1 + \sqrt{1 \pm \alpha_*}\right)^2 R_g$	$\Box \ \alpha_* = 0 \qquad \Box \ R_{mb} = 4R_g \qquad \Box \ R_{ISCO} = 6R_g$			
$\square R_{VSCO} = (3 + Z_2 + \sqrt{(3 - Z_1)(2Z_2 + Z_1 + 3)})R_{c}$	Rotating "Kerr" black holes			
$= Z_1 = 1 + (1 - \alpha_*^2)^{\frac{1}{3}} \left((1 + \alpha_*)^{\frac{1}{3}} + (1 - \alpha_*)^{\frac{1}{3}} \right)$	$\Box -: \text{co-rotation} \qquad \Box R_g \le R_{mb} \le R_{ISCO} \le 6R_g$			
• $Z_2 = (Z_1^2 + 3\alpha_*^2)^{\frac{1}{2}}$	$\Box +: \text{counter-rotation} \Box R_{mb} \le 5.83R_g < R_{ISCO} \le 9R_g$			
	R _{ISCO}			

Kerr Pseudo-Newtonian Potential

- In most cases, a stationary compact object assumption is adopted in modeling the X-ray binary spectra
 The majority of stellar objects have angular momentum Many black holes exhibit significant spin parameters
- The black hole's rotation could lead to a significant modification of the accretion disk's and the jet's energy output

• Artemova potential

$$F_{M} = \frac{GM_{bh}}{r_{g}^{2}} \frac{1}{\bar{r}^{2-\beta}(\bar{r}-\bar{r}_{h})^{\beta}} - ----$$

$$\bar{r}_h = 1 + \sqrt{1 - \alpha_*^2}$$
$$\beta = \frac{r_{in}}{r_h} - 1$$

• $\bar{r} = r/r_g$, $\alpha_* \rightarrow$ dimensionless spin parameter, $r_{in} \rightarrow$ innermost disk boundary • Advantages

- □ Simple expression that reduces to Paczyński–Wiita potential for $\alpha_* = 0$
- \square Reproduces the Kerr metric properties such as R_{mb} and R_{ISCO} pretty accurately
- □ Particularly efficient for rapidly rotating black holes ($\alpha_* \approx 1$)
- \Box Works for radii smaller than R_{ISCO}

Spin-dependent disk temperature profile

Observed disk radiative efficiency

Modification of the disk's inner boundary

2025, A&A, 693, A75

Kosmas O., Kosmas T.

Papavasileiou Th

How does our approach compare to General Relativity?

Error margin & deviation from General Relativity

Fitting the Cygnus X-1 spectra

VII. Summary & Conclusions

Conclusions I

- Very low prospects of neutrino detection, except Cygnus X-1 in the 0.1-1 TeV range → Particle cooling due to synchrotron emission and inelastic collisions below 100 GeV
- The jet γ -ray fluxes are absorbed in the 100 GeV 10 TeV range \rightarrow most gamma-ray telescopes operation \rightarrow lack of high-energy γ -ray spectra from XRB sources
- Lack of high-energy γ -ray emission \rightarrow inefficient proton acceleration and inelastic collisions at higher jet grids \rightarrow reduction of γ -ray photon production
- Increase in broadband emission from radio to VHE gamma-rays when: $i < 20^{\circ}$ $a \ll 1$ $z_0 > 10^{11} cm$ $z_{max} \approx 10z_0$
- We fit the observational data of Cygnus X-1 during the high/soft and the hard/low state:
 High/soft → Blackbody + IC due to a thermal/non-thermal corona
 Hard/low → Sync from lepto-hadrons + (Blackbody with R_{in} > R_{isco} + IC) + p-p

Conclusions II

References

- 1. Bosch-Ramon, V., Romero, G. E. & Paredes, J. M. 2006, A&A, 447, 263
- 2. Reynoso, M. M. & Romero, G. E. 2009, A&A, 493, 11.
- 3. Reynoso, M. M. & Carulli, A. M. 2019, APh, 109, 25
- 4. Kelner, S. R., Aharonian, F. A., & Bugayov, V. V. 2006, PRD, 74, 034018
- 5. Papavasileiou, Th. V., Kosmas, O., & Kosmas, T. S. 2025, A&A, 693, A75
- 6. Papavasileiou, Th. V., Kosmas, O. T., & Sinatkas, I. 2023, A&A, 673, A162
- 7. Papavasileiou, Th. V., Kosmas, O., & Sinatkas, I. 2023, Universe, 9(7), 312
- 8. Kosmas, O. & Smponias, T. 2018, AdHEP, 9602960
- 9. Cerutti, B., Dubus, G., Malzac, J., et al. 2011, A&A, 529, A120
- 10. Ahnen, M. L. et al. 2018, A&A, 612, A14
- 11. Malyshev, D., Zdziarski, A. A., & Chernyakova, M. 2013, MNRAS, 434, 2380
- 12. Miller-Jones, J. C. A. et al. 2021, Science, 371, 1046
- 13. Tetarenko, A. J. et al. 2019, MNRAS, 484, 2987
- 14. Campitiello, S., Ghisellini, G., Sbarrato, T., & Calderone, G. 2018, A&A, 612, A59

Acknowledgement

- Prof. Ioannis Sinatkas, Department of Informatics, University of Western Macedonia
- Dr. Odysseas Kosmas, Department of Physics, University of Ioannina
- Prof. Theocharis Kosmas, Department of Physics, University of Ioannina
- Mr. Athanasios Gkrepis, Department of Informatics, University of Western Macedonia

University of Ioannina

