Double Gamow–Teller transition studied by charge exchange reaction of (12C, 12Be(0+2)) at 250 MeV/nucleon

Akane Sakaue (RIKEN Nishina Center) 2025.08.21 NEWS colloquium

Giant resonance

- · Giant resonance: collective excitation of nucleus
 - Ex > ~10 MeV
 - Oscillation of nucleus
 - Coherent excitation of 1p1h
 - Account for large fraction of sum rule value

S. C. Fultz et. al., Phys. Rev. Lett. 127, 1273 (1962)

- Observed in wide range of nucleus and in various mode (ΔS , ΔT , ΔL)

Double Gamow-Teller transition

- Gamow–Teller (GT) transition : spin $\Delta S=1$, isospin $\Delta T=1$, $\Delta L=0$ β decay : $^{A}Z \rightarrow ^{A}(Z+1) + e^{-} + \overline{v}_{e}$ (β decay)
- Double Gamow–Teller (DGT) transition : spin ΔS=1x2, isospin ΔT=1x2, ΔL=0
 Double β decay: AZ → A(Z+2) + 2e⁻ + 2 √√e (β-β- decay)

double β decay ~0.01% of sum rule value

Other 99.9% is in **Ex > ~ 10 MeV**Experimentally unobserved region

Especially, it is expected to exist giant resonance in DGT transition **DGT giant resonance (DGTGR)**

Double Gamow-Teller Giant Resonance

Get DGT response in high Ex Observation of DGTGR

The experimental information of DGTGR will provide various insight into nuclear nature:

- Understanding of collective excitation in the spin-dependent process
 - Ec, Γ, ... are the simple superposition of single GTGR?
 - DGTGR has larger strength
 - \rightarrow provide information to double β decay : 0vββ

Neutrino-less double beta decay

If neutrinos are Majorana particle, neutrino-less double beta decay (0vββ) can occur

$$0v\beta\beta$$
: $^{A}Z \rightarrow ^{A}(Z+2) + 2e^{-}$

lifetime of $0 v \beta \beta$ and neutrino mass : $[T_{1/2}^{0 \nu}]^{-1} = G_{0 \nu}(Q,Z) \, |M_{0 \nu}|^2 m_{\beta \beta}^2$ neutrino mass ov $\beta \beta$ lifetime $0 v \beta \beta$ neutrino mass neutrino mass $0 v \beta \beta$ lifetime $0 v \beta \beta$ neutrino mass $0 v \beta \beta$ lifetime $0 v \beta \beta$ neutrino mass $0 v \beta \beta$

Calculated NME has uncertainty by factor of 2~3 depending on models

Information from experimental side is needed

DGT and 0vββ NME

information on DGT response will provide information on $0\nu\beta\beta$

OGT NME v.s. 0vββ NME in several calculation Shimizu, Menéndez, Yako PRL120

- · Shell model
 - KB3G
 - GXPF1B
- EDF
- QRPA

✓ DGT NME is correlated to 0vββ NME

DGT and 0vββ NME

information on DGT response will provide information on 0vββ

0νββ NME v.s. centroid energy of DGTGR Ec in shell model calc.

Shimizu, Menéndez, Yako PRL120

- ✓ DGTGR Ec is correlated to 0vββ NME
 - 0vββ NME is sensitive to pairing
 - Ec of DGTGR is sensitive to pairing

Observable of DGTGR will constrain 0vββ NME

Double charge exchange reaction

GT response in high excitation energy beyond β decay : (single) Chrage Exchange reaction (SCX) e.g. (p,n), (n,p), (³He,t),...

DGT response in high excitation energy beyond ββ decay : Double Chrage Exchange reaction (DCX)

previous studies:

- (π+, π-) @292 MeV LAMPF S. Mordechai, PRL 60, 408 (1988)
- (18O, 18Ne) @76 MeV/u MSU J. Blomgren, PLB 362, 34 (1995)
- · (11B, 11Li) @69 MeV/u RCNP H. Takahisa, AIP Proc. Conf. 915, 815 (2007)

conclusive observation is not yet achieved

new probe

· (12C, 12Be(0+2)) @~100 MeV/u

New probe: $(^{12}C, ^{12}Be(0+_2))$

¹²Be(0+₂): isomeric state

 $Ex = 2.2 \text{ MeV}, \tau = 330 \text{ ns}$

- Transition between $^{12}\text{C}(0^+) \rightarrow ^{12}\text{B}(1^+) \rightarrow ^{12}\text{Be}(0^+{}_2)$ will be strong
- Spin flip transition ¹²C(0⁺)→¹²B(1⁺)→¹²Be(0⁺₂) will be main

(cf.isobaric analogue partner of $^{12}Be(0^{+}_{2})$: $^{12}C(29 \text{ MeV}))$

β- type in the target: less affected by Pauli blocking

(12C, 12Be(0+2)) at ~200 MeV/u mainly excite spin isospin flip

De-excite with emitting e⁺e⁻

→ 511 keV delayed γ-ray

ID of final state is possible by detectiong γ-ray

Pilot experiment at RCNP

⁴⁸Ca(¹²C, ¹²Be(0+₂)) at RCNP (2014, Takaki et al.)

- 100 MeV/u, 16 pnA ¹²C beam was irradiated to ⁴⁸Ca target
- emitted ¹²Be was momentum analyzed by Grand Raiden spectrometer
- ¹²Be was stopped at the active stopper (plastic scintillator)
- 511 keV γ-ray were detected by Nal scintillator array

Pilot experiment at RCNP

⁴⁸Ca(¹²C, ¹²Be(0+₂)) at RCNP (2014, Takaki et al.)

- γ -ray timing reproduces the life time of 12 Be(0+2) \rightarrow ID of 12 Be(0+2) is possible
- Enhancement in the expected region in the observed cross section
- BG was serious: S:N=1:1
 - Active stopper (12C) reacted with t and produced 11C (β+ emitter)
- Statistics is not enough

Experiment at RIBF BigRIPS

DCX measurement is performed at RI Beam Factory (RIBF), Saitama, Japan

Measurement of (12C, 12Be(0+2)) at RIBF BigRIPS

First experiment at RIBF

- The first experiment at RIBF was performed in 2021
 - Target: 48Ca (10 mg/cm² foil)
 - Double magic nucleus
 - Double beta decaying nucleus (cf. CANDLES experiment)
 - Information of single GT resonance is available
 - The target was protected with graphene sheets
 - Thermal conductivity is enhanced → reduce the damage due to irradiation
 - Prevent from oxidation and nitrization when installing

⁴⁸Ca target

Achievement in the first experiment

✓ Dispersion matching

 $\Delta p/p \sim$ **0.06%** (w/o DM) \rightarrow **0.026%** (w/ DM) Sufficient excitation energy resolution (1.5 MeV) was achieved

√ Detection of ¹²Be(0⁺₂) events

successfully identified 12Be(0+2)

BG : acc. coin of ¹²Be and room BG γ
- S:N ~ 9:1

low BG

(cf. 1:1 at RCNP)

120

100

60

w/ dispersion

matching

w/o dispersion

matching

Energy spectra of ⁴⁸Ca(¹²C, ¹²Be(0+₂))⁴⁸Ti

Energy spectra of ⁴⁸Ca(¹²C, ¹²Be(0+₂))⁴⁸Ti

Calculation of DCX

Angular disribution for DCX is estimated by coupled channel calculation with ECIS97

- intinal state: ¹²C(0+)+⁴⁸Ca(0+)
- intermediate state: 12B(1+)+48Sc(1+) are considered as each channel
- final state: 12Be(0+)+48Ti(0+)

outline of the calculation:

- transition form factor is obtained by folding microscopic transition using FOLD
- global optical potential by T. Furumoto

3 types of ΔL :

- $\Delta L_{DCX}=0$: $[\Delta L=0]\otimes [\Delta L=0]$ **DGT-like**
- $\Delta L_{DCX}=1: [\Delta L=1] \otimes [\Delta L=0]$
- · $\Delta L_{DCX}=2: [\Delta L=2] \otimes [\Delta L=0]$

Angular distribution of SCX & DCX

single charge exchange

The consistency of the calculation was checked with SCX data

observed distribution is well described with $\Delta L=0+\Delta L=2$

B(GT)=1.4 (known value: 1.09±0.01)

E.-W. Grewe et al., PRC 76, 054307 (2007)

absolute value of cross section is reproduced within ~30%

Angular distribution of SCX & DCX

Double charge exchange

✓ ∆L_{DCX}=0 is forward-peaking

(Thin line: smeared by angular resolution)

Decomposition of measured angular distribution

Observed angular distributions are decomposed by linear combinations of $\Delta L_{DCX}=0, 1, 2$

Example of decomposition in several energy bins:

 $\triangle L_{DCX} = 0$

: Fit result

is $\Delta L_{DCX}=0$

Extracted cross section of $\Delta L_{DCX}=0$

Energy distribution of extracted $\Delta L_{DCX}=0$ cross section at 0-0.3°

 ΔL_{DCX} =0 cross section is 0.50^{+0.35}_{-0.11} µb/sr in 0-34 MeV 38⁺²⁶₋₈% of observed cross section is ΔL_{DCX} =0

Double Gamow—Teller transition strength

Proportionality relation between cross section at 0 deg and B(GT)

$$\sigma(0^{\circ}) = \hat{\sigma}_{GT} F(q, \omega) \ B(GT)$$

Gamow-Teller transition strength
$$B(GT) = \frac{1}{2J_i + 1} \left| \langle f || \sigma \tau || i \rangle \right|^2$$

 $\hat{\sigma}_{GT}$ (unit cross section) : proportional coefficient $F(q,\omega)$: kinematical dependence

· Proportionality relation betweenn cross section at 0 deg and B(DGT) is assumed :

$$\sigma(0^{\circ}) = \hat{\sigma}_{DGT} F(q, \omega) \ B(DGT)$$

Double Gamow-Teller transition strength $B(\mathrm{DGT}) = \frac{1}{2J_i + 1} \left| \langle f \| (\sigma \tau)^2 \| i \rangle \right|^2$

Extraction of B(DGT) from the data

Proportional relation is assumed: $\sigma(0^{\circ}) = \hat{\sigma}_{DGT}F(q,\omega)~B(DGT)$

B(DGT) is factorized on the heavy ion reaction : B(DGT)= B_{target}(DGT)*B_{projectile}(DGT)

$$\frac{d\sigma}{d\Omega}(0^{\circ}) = \hat{\sigma}_{\mathrm{DGT}}F(q,\omega) B_{\mathrm{target}}(\mathrm{DGT}) B_{\mathrm{projectile}}(\mathrm{DGT})$$

$$^{48}\mathrm{Ca} \rightarrow ^{48}\mathrm{Ti}$$

ΔL_{DCX}=0 cross section at 0°

• B_{projectile}(DGT) is deduced by assuming single intermediate state:

$$\mathsf{B}_{12\mathsf{C}(0+)\to 12\mathsf{Be}(0+2)}(\mathsf{DGT}) = \mathsf{B}_{12\mathsf{C}(0+)\to 12\mathsf{B}(1+)}(\mathsf{GT}) \ ^* \ \mathsf{B}_{12\mathsf{B}(1+)\to 12\mathsf{Be}(0+2)}(\mathsf{GT})$$

F. Ajzenberg-Selove, Nucl. Phys. A 506, 1 (1990) R. Meharchand et al., Phys. Rev. Lett. 108, 122501 (2012).

• σ_{DGT} and $F(q,\omega)$ are obtained by ECIS

Extraction of B(DGT) from the data

$$\frac{d\sigma}{d\Omega}(0^{\circ}) = \hat{\sigma}_{\mathrm{DGT}}F(q,\omega) \ B_{\mathrm{target}}(\mathrm{DGT}) \ B_{\mathrm{projectile}}(\mathrm{DGT})$$

$$\Delta L_{\mathrm{DCX}}=0 \ \mathrm{cross} \ \mathrm{section} \ \mathrm{at} \ 0^{\circ}$$

Ex distribution of B(DGT)

Other possibility than DGT transition

In the extraction of ΔL_{DCX} =0 components, other transitions with similar angular distribution to the DGT are not excluded

e.g. IsoVector Spin Monopole (IVSM) $(\hat{O}^{\pm}_{IVSM} = \sum \sigma_i \tau_i^{\pm} r_i^2) \rightarrow IVSM \otimes GT, IVSM \otimes IVSM,...$

Consider the expected energy where these modes emerges

- Energy expected by adding E in single resonances
 - DGTGR : E~28 MeV
 - E_{IVSM⊗GT}~39 MeV
 - E_{IVSM⊗IVSM}~50 MeV
- Prediction by shell model is distributed at Ex < 35 MeV</p>
 - 0<E<34 MeV
 - → DGT
 - E>34 MeV
 - →IVSM⊗GT, DIVSM? or DGTGR is pushed out to higher E?

Further study is needed for interpretation

DGT transition strength in Ex=0–34 MeV

Sum, centroid energy, width of B(DGT) in 0<Ex<34 MeV is evaluated S= 28^{+22} -7, E_c = 23±3 MeV, Γ = 6±1 MeV (22⁺¹⁷-6% of sum rule value)

$$S = \sum_{i} B_{i}(DGT) \qquad E_{c} = \frac{\sum_{i} E_{i} B_{i}(DGT)}{\sum_{i} B_{i}(DGT)} \qquad \Gamma = \frac{\sum_{i} (E_{i} - E_{c}) B_{i}(DGT)}{\sum_{i} B_{i}(DGT)}$$

B(DGT) has been first evaluated in high Ex region

Ec of DGTGR and NME

Sum, centroid energy, width of B(DGT) in 0<Ex<34 MeV is evaluated S= 28^{+22} -7, E_c = 23±3 MeV, Γ = 6±1 MeV (22^{+17} -6% of sum rule value)

Centroid energy of DGTGR $E_c \leftrightarrow NME$ of $0v\beta\beta$

N. Shimizu, J. Menéndez, K. Yako Phys. Rev. Lett. 120, 142502 N. Shimizu, Private communication 28

Ec of DGTGR and NME

Sum, centroid energy, width of B(DGT) in 0<Ex<34 MeV is evaluated S= 28^{+22} -7, E_c = 23±3 MeV, Γ = 6±1 MeV (22⁺¹⁷-6% of sum rule value)

Centroid energy of DGTGR $E_c \leftrightarrow NME$ of $0v\beta\beta$

N. Shimizu, J. Menéndez, K. Yako Phys. Rev. Lett. 120, 142502

Possible to constrain NME by experiment of DCX

N. Shimizu, J. Menéndez, K. Yako Phys. Rev. Lett. 120, 142502

N. Shimizu, Private communication 29

Future plan

The first (12C, 12Be(0+2)) experiment at RIBF for 48Ca

- DGT at Ex > 10 MeV was measured with high resolution and low BG
- Candidate for the DGTGR was observed
- DGT strength was evaluated
- statistics is not enough specific discussion is not yet achieved

High statistics experiment will provide more clear information on DGT

- Next plan: Using target with large cross section
 - Transition strength

 2(N-Z)(N-Z+1)
 H. Sagawa and T. Uesaka, PRC 94, 064325 (2016)
 - → Next target: ¹³⁶Xe
 - Transition strength ~ ⁴⁸Ca x13,
 cross section ~ x4 considering distortion
 - Magic neutron number
 - Target nucleus of KamLAND-Zen

nuclide	2(N-Z)(N-Z+1)
⁴⁸ Ca	112
⁷⁶ Ge	264
⁸² Se	364
⁹⁶ Zr	480
¹⁰⁰ Mo	480
¹¹⁶ Cd	760
¹²⁸ Te	1104
¹³⁰ Te	1300
¹³⁶ Xe	1512
¹⁵⁰ Nd	1740
238U	5724

Future plan - ¹³⁶Xe target

In order to realize ¹³⁶Xe measurement, Gas target is to be installed in F0

- Gas is filled in the cell with window
- develop in collaboration with pionic atoms group (Itahashi et al.)

Gain comparing ⁴⁸Ca experiment:

- cross section x4
- optimization of setup x2 yeild
- thick target x2.5 yield
 - 20 times statistics
- If data taking time x2
 (cf. ⁴⁸Ca measurement ~ 1.5days)

Plan: FY2025 submit proposal FY2026 complete development of gas target FY2027- ¹³⁶Xe measurement

example of the gas target (developed at RCNP)

F0 chamber and target holder (for solid target)

Summary

- Double Gamow–Teller giant resonance (DGTGR) will provide various insight to the nuclear nature, including NME of 0vββ
- DGT in high Ex is examined by double charge charge reaction of (12C, 12Be(0+2))
- The first experiment at RIBF was performed in 2021 for ⁴⁸Ca target
 - DCX was measured with Δ Ex=1.5 MeV, $\Delta\theta_{CM}$ =0.2° with low BG: 1.33±0.12 µb/sr in 0-34 MeV at the most forward angle
 - Forward peaking structure was observed around Ex=20 MeV
 Candidate for DGTGR
 - DGT strength was evaluated by using angular distribution
 - Sum of the strength = 22^{+17} -6% of sum rule value, Ec = 23 ± 3 MeV, Γ = 6 ± 1 MeV
 - The result shows the possibility of constraining 0vββ NME by experiment of DCX
- Next plan: ¹³⁶Xe target
 - Development of gas target is now ongoing
 - Higher statistics experiment $\rightarrow \Delta Ec = 0.8 \text{ MeV}$
 - We will get more clear information on DGT response