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Introduction

• Understanding baryon number violation is fundamental for explaining the 

stability of matter and possible new physics beyond the Standard Model.

• MAJORANA DEMONSTRATOR:

An ultra-low-background experiment designed to search for neutrinoless 

double-beta decay (0𝜈𝛽𝛽) and rare multi-nucleon decay modes in high-purity 
germanium (76Ge) detectors, located deep underground at the Sanford 

Underground Research Facility (SURF).

• Present results from the full dataset: the most stringent limits to date for rare 

multi-nucleon decay processes in germanium isotopes, probing lifetimes up to 

1026years.
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Inflation

Dark Matter?
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• Pair production and annihilation
• Thermal equilibrium
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• Matter-antimatter asymmetry
• No thermal equilibrium
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Matter-Antimatter Asymmetry

Cosmic Microwave Background Radiation 
(Planck, 2018, arxiv:1807.06205)

• Baryon asymmetry of Universe

− Baryon/photon ~6x10-10 (Cosmic Microwave 
Background Radiation; Nobel Prize 2006)

https://arxiv.org/abs/1807.06205
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Matter-Antimatter Asymmetry

• Baryon asymmetry of Universe

− Baryon/photon ~6x10-10 (Cosmic Microwave 
Background Radiation; Nobel Prize 2006)

• Sakharov (Nobel Peace Prize 1975) conditions

− Departure from thermal equilibrium

− Charge-parity(CP) violation

− Baryon number nonconservation

• The Universe cooled now.

• CP violation only observed in kaon (Nobel Prize 

1980)and B meson decays

− Kobayashi-Maskawa mechanism in Standard 
Model (CKM Matrix) (Nobel Prize 2008)

− Baryon/photon~10-18

• No evidence for baryon number violation!

− 0𝛽𝜈𝜈 (MJD, PRL130.062501)

− Tri-nucleon Decay (MJD, PRC112. L022501) CKM Matrix

Departure from thermal equilibrium

Kaon decay
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Origins and Early Theory of Baryon Decays

• The concept emerged in the context of grand unified theories (GUTs).

− Predict proton decays

• The current limit is /B(p →e+π0) >2.4×1034 yr (Super-Kamiokande, PRD 
102.112011 (2020))
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Experimental Efforts

• Proton and Nucleon Decay Searches (underground experiments)

− Kamiokande / Super-Kamiokande, Soudan, SNO, etc

− 𝑝 → 𝑒+𝜋0, 𝑝 → 𝜇+𝜋0, 𝑝 → ҧ𝜈𝐾+, 𝑝 → 𝑒+𝐾0, 𝑝 → 𝜇+𝐾0

• Collider-Based Baryon Decay Studies

− LHC, Belle, etc

− 𝑡 → 𝑙+𝑗𝑗(where 𝑙 =e or μ) , 𝜏− → 𝛬𝜋−

• Neutron–Antineutron Oscillation

− European Spallation Source, SNO, Super-Kamiokande

− 𝑛 → ത𝑛
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Multi-nucleon Decays

• Extension of Higgs sector or GUT-inspired models allow Δ𝐵 = 2
− Best limit is > 4.04x1032 yr (Super-K)

• The Z₆ model is the Standard Model extended by an additional discrete 
symmetry (Z2xZ3), i.e., the centers of SU(2) and SU(3).

− Include the right-handed neutrinos to cancel anomalies.

− K. S. Babu, I. Gogoladze, and K. Wang, Gauged baryon parity and nucleon stability, 
Phys. Lett. B 570, 32 (2003).

• This forbids all operators with Δ𝐵 = 1 or Δ𝐵 = 2, such as single proton decay 

or neutron–antineutron oscillations. Only Δ𝐵 = 3(such as triple nucleon decay) 
is permitted, but only via extremely high-dimension (dimension 15) operators.
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Three-nucleon Decays in MAJORANA DEMONSTRATOR
• Semi-inclusive visible modes

− 𝑝𝑝𝑝 → 𝑒+𝜋+𝜋+, 𝑝𝑝𝑛 → 𝑒+𝜋+, 𝑝𝑛𝑛 → 𝑒+𝜋0, 𝑛𝑛𝑛 → ҧ𝜈𝜋0

− Deposit large energy in the detectors

− Cannot distinguish positrons or pions in MJD

− The excited daughter can emit gammas (multiple detectors)

− Search for emission of enormous energy and the following 
daughter isotope decay

• Fully inclusive modes

− 76Ge 𝑝𝑝𝑝 → 73𝐶𝑢 + 𝑋, 76Ge 𝑝𝑝𝑛 → 73𝑍𝑛 + 𝑋,

− 76Ge 𝑝𝑛𝑛 → 73𝐺𝑎 + 𝑋, 76Ge 𝑛𝑛𝑛 → 73𝐺𝑒 + 𝑋

− 𝑋 can deposit energy in detectors (visible) or escape from 
detectors (invisible)

− Search for the daughter isotope decays and the grand-
daughter isotope decays

• Don’t consider the proton or neutron emission (excited 

daughter isotopes). Calculate partial lifetime.
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Semi-inclusive Visible Modes

: Event Selection 1

• 𝑝𝑝𝑝 → 𝑒+𝜋+𝜋+, 𝑝𝑝𝑛 → 𝑒+𝜋+, 𝑝𝑛𝑛 →
𝑒+𝜋0, 𝑛𝑛𝑛 → ҧ𝜈𝜋0

• Visible particles (e.g., positrons, pions) 

deposit large amounts of energy in 

germanium detectors (three-nucleon 
mass ≈ 3 GeV).  

• Event selection (Step 1): identify high-

energy deposits (>10 MeV) — 

saturated events not tagged as muons 

(Ge detector energy threshold ~10–11 
MeV). 



1310/30/2025

Semi-inclusive Visible Modes

: Event Selection 1

• Selection efficiency: ~99%. 

Calculated using GEANT4 

simulations.

− Simulate energy release from 3-
nucleon decays

− Track daughter particles (isotopes, 
positrons, pions, etc.)

− Propagate particles within 
germanium detectors

− Calculate fraction of events 
depositing >10 MeV (𝜖0)
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• Daughter isotopes are unstable.  

• After the first saturated event, select events 

within 5 × half-life where energy > 100 keV.  
− The 5×T₁/₂ window corresponds roughly to a 5σ 

coverage (𝜖𝜏1
).  Must account for run gaps due to 

calibrations, detector downtime, or power outages.  

− Example: for ⁷³Cu, T₁/₂ = 4.2 s → search window = 4.2 × 
5 = 21 s.  

− Calculate the energy efficiency from 100 keV up to Q-
value for each decay channel. (𝜖𝐸1

)

• This approach is possible because the first 

events are very rare (thanks to the highly 

efficient muon tagging), and the MJD 

background is extremely low.

Semi-inclusive Visible Modes

: Event Selection 2

100 keV

2 MeV
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Fully Inclusive Modes: Event Selection

 
• 76Ge 𝑝𝑝𝑝 → 73𝐶𝑢 + 𝑋, 76Ge 𝑝𝑝𝑛 → 73𝑍𝑛 + 𝑋,

• 76Ge 𝑝𝑛𝑛 → 73𝐺𝑎 + 𝑋, 76Ge 𝑛𝑛𝑛 → 73𝐺𝑒 + 𝑋

• 𝑋 can deposit energy in detectors (visible) or escape from 
detectors (invisible)

• We don’t consider X but the decays of the daughter isotopes 
and the following grand-daughter isotopes.

• For example, 73Cu can decay to 73Zn and 73Zn can decay to 
73Ga.

• Select the first event of energy > 2 MeV. There are more low 
energy backgrounds. (𝜖𝐸1

)

• After the 5×T₁/₂ window of the grand-daughter isotope (𝜖𝜏2
), 

search for the second event of energy > 2MeV. (𝜖𝐸2
)

• Calculate the energy efficiency from 2 MeV up to Q-value for 
each decay channel. Exclude the multi-site events because of 

the multi-site cuts.
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Experimental Efforts for Three-nucleon Decays
Experim
ent

Isoto
pe

Channels Lifetime Limits
 (1023 yr)

Year

NaI(Tl) 127I nnn (invisible) 1.8 (1994)

DAMA/
LXe

136Xe pnn (invisible) 0.14 (2006)

ppn (invisible) 0.27

ppp (invisible) 0.36

EXO-200 136Xe ppn (invisible) 1.9 (2018)

ppp (invisible) 3.3 

MJD 76Ge ppn (e++) 703 (2019)

ppp (e+++) 678

GERDA 76Ge ppp, ppn,pnn 
(All inclusive)

1200 (2023)

MJD 76Ge ppn (e++) 1827 (2025)

ppp (e+++) 1836
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Location

• Earth shielding blocks cosmic rays

• Sanford Underground Research Facility 

(SURF): Located in Lead, SD, at a depth 

of 1480 m

• Equivalent to ~4300 m water overburden 
(m.w.e.) 

• Muon flux reduced from ~10⁻² /cm²/s 

(surface) to ~5×10⁻⁹ /cm²/s 

(underground)

• Site of the historic Homestake 
experiment — Ray Davis’s pioneering 

solar neutrino detection (Nobel Prize 

2002) 

MJD
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Low Background

• Active veto: muon detection 

panels

• Passive shielding: 
polyethylene, underground 

lead, commercial + electroform 
copper layers

• Radon suppression: 
continuous nitrogen purge
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Big Detector Arrays

• Sensitive to events of strange patterns
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Detectors

• Enriched Germanium (76Ge) detector ~ 

88% 76Ge enrichment

• Excellent resolution: peak width/energy ~ 

0.1%

• Low threshold ~ 1 keV

• High-purity semiconductor: Ge bandgap ~ 

0.8 eV

Electroform copper

Deposit energy

Bias voltage

current

lithium-diffused surface (n+)

Passivated surface.

p+

n+

Low mass JFET
Point contact (p+)
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Energy Reconstruction

• Calibrated on weekly 228Th calibration data, 

retuned on full data set 

• Energy estimated via optimized trapezoidal 

filter of ADC-nonlinearity-corrected traces with 

charge-trapping correction 

• Energy resolution (2.5 keV FWHM @ 2039 

keV) and linearity (< 0.2 keV up to 3 MeV) a 

record for neutrinoless double-beta decay 

searches 

• Charge trapping correction improves 

resolution at 2039 keV from 4 keV to 2.5 keV 

FWHM 

228Th Energy Calibration Spectrum and Resolution
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Background Rejection

• Point-contact HPGe detectors are 

essential for background rejection.

• Pulse-shape analysis (PSD):

− AvsE: multiple-site event rejection — 
compares maximum waveform slope to 
energy, primarily rejects external γ 
events.

− DCR (Delayed Charge Recovery): 
identifies slow charge collection from 
surface α contamination (mainly from 
radon decay chain).

− LQ (Late Charge): flags partial charge 
collection in the transition layer, often 
from β or γ interactions.

Bulk 
event
Surface 
α event

Slow passivated surface 
charge collection (~10 μs): 

DCR cutFast drift 
time: high 
AvsE cut

Slow transition layer charge 
collection (~1 μs): LQ cut
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Multi-Site Events Cut (AvsE)

• Amplitude of current pulse is suppressed for a 

multi-site event compared to a single-site event 
of the same event Energy (AvsE) 

• Tuned on 228Th calibration data to accept 90% of 

single-site DEP events. Rejects >50% of the 
Compton continuum near Qββ

Single-Site (0νββ-like)

accepted

Multi-Site (γ-like)

rejected

228Th calibration data

Multi-site eventSingle-site event

γ
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• Alpha particles incident on 

the passivated surfaces 

have a degraded energy 

reconstruction and can fall 

near Qββ. 

Surface alphas

α

• Charge trapped at passivated surface is 

slowly rereleased (~10s of μs): Delayed 

Charge Recovery (DCR) 
• Cut using slope of tail after rising edge 
• Tuned to keep 99% of bulk events

• Suspect α contamination near passivated 

surface 210Po from 222Rn exposure

Passivated Surface Events (DCR)
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Surface Cuts: 

Point-Contact Events (AvsE)

• Alphas incident on the point 

contacts release less delayed 

charge and evade the DCR 

cut. 

• But they have steeper rising 

edges, so the higher current 

amplitude events can be 

removed using the AvsE cut. 

Near point contact events have a higher current amplitude

Joint A/E-DCR spectrum from TUBE scanner, with an α-source scanning 
across the passivated surface of a PPC detector

α
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Slow Component

Surface Cuts: 

Transition Dead-Layer Events (LQ)

• Events in lithiated n-plus surfaces 

experience severe energy degradation 
and slow (~1-2 μs) rerelease of charge. 
Events with a partial charge deposit in this 

transition layer are potential backgrounds! 

• Cut waveforms with a slow component 

using “Late Charge” (LQ):  area above 
rising edge of waveform after 80% of 
charge is collected

•  Tune to keep >99% of single-site bulk 
events using 208Tl double escape events 

DEP
Compton 
shoulder

Tails of waveforms from 
charge in transition DL

LQ cut leaves bulk single-site structures 
in 228Th calibration data intact

β
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Run Configuration and Timeline

Deploy Module 2 in shield

Deploy Module 1 in shield

Cable/Connector Upgrade of Module 2

Removed 5 PPC detectors for LEGEND Testing

Installed 4 LEGEND ICPC Detectors

Mar. 2021:

Stopped enrGe Operation

Removed all enrGe for 
LEGEND-200

Operation of Module 2. 
with natural Ge detectors.
Now with 180mTaMirion/Canberra

BEGe
natGe

Ortec ICPC
enrGe

Ortec 
PPC

enrGe

2015 2016 2017 2018 2019 2020 2021 2022

Module 1

Module 2

12.9 kg (15) enrGe

8.8 kg (14) natGe
14.1 kg (13) enrGe

 8.8 kg (14) natGe

6.7 kg (4) as ICPC 

14.3 kg (23) natGe

0.6 -1.2 kg 1.3 -2.1 kg
~0.6 kg

16.8 kg (20) enrGe

5.6 kg (9) natGe
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Exposure

• PPC (87.4% 76Ge, 

12.6% 74Ge): 61.64 kg 
yr

• ICPC (88% 76Ge, 

12%74Ge): 2.82 kg yr

• BEGe (20.5% 70Ge, 

27.4% 72Ge, 7.8% 
73Ge, 36.5% 74Ge, 7.8 
76Ge): 27.4 kg yr

• Account for run gaps 
due to calibrations, 

detector downtime, or 
power outages.

Previous Data Release: 
26 kg-yr

Add Inner Cu Shield 2

Add Module 2

Start with Module 1

Both Modules

Upgrade Module 2:
Add ICPC Ge detectors
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Search Candidates for Semi-inclusive 

Visible

• The longest T1/2 is 1268.4 s so 5xT1/2 is 6342 s.

• One potential event for semi-inclusive visible 

mode

− Energy of first event > 11558 keV

− Energy of second event: 147 keV

− Time difference between first and second events: 
1712 s

− Satisfy 

▪
76Ge(pn) → 74Ga + π⁰ + π⁺

▪
73Ge(pnn) → 70Ga + e⁺ + π⁰

▪
72Ge(pn) → 70Ga + π⁰ + π⁺

▪
70Ge(nnn) → 67Ge + ν̄ + π⁰

Isoto
pe

T1/2 (s) Q (MeV)

73Cu 4.2 6.6

73Zn 24.5 4.1

74Zn 95.6 2.3

74Ga 487.2 5.4

71Cu 19.4 4.6

71Zn 147 2.8

70Cu 44.5 6.6

70Ga 1268.4 1.7

69Cu 171 2.7

67Ge 1134 4.2
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Search Candidates for Fully Inclusive

• One potential event for fully inclusive mode

− Energy of first event: 2294 keV

− Energy of second event: 2614 keV

− Time difference between first and second events: 
1657 s

− Satisfy no channels 

Isoto
pe

T1/2 (s) Q (MeV)

73Cu 4.2 6.6

73Zn 24.5 4.1

74Zn 95.6 2.3

74Ga 487.2 5.4

71Cu 19.4 4.6

71Zn 147 2.8

70Cu 44.5 6.6

70Ga 1268.4 1.7

69Cu 171 2.7

67Ge 1134 4.2
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The Partial Lifetime Limit

• The partial lifetime limit is calculated as

− 𝜏 >
𝑁𝑇𝜖𝑡𝑜𝑡

𝑆

− NT is exposure, 𝜖 is the efficiency and S is the signal upper limit 
corresponding to Feldman-Cousins 90% confidence level. 

• In this study, we considered all detectors including enriched 

and natural detectors; need to calculate PPC, ICPC, BEGe 

separately (And each has its own efficiency study). 

• The data cleaning cuts discard nonphysical waveforms, 

pileup waveforms, pulser events.

• The Pulse-shape analysis (PSD) cuts, including AvsE, 

DCR, and LQ, discard background events.

I PPC ICPC BEGe

𝑁𝑇𝑖 61.64 
kg yr

2.82 kg 
yr

27.383 
kg yr

𝜖𝐷𝐶,𝑖 99.1% 99.9% 99.9%

𝜖𝑃𝑆𝐷,𝑖 86.1% 81.0% 86.1%
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Final Results for Semi-inclusive Visible Mode

• 𝑁𝑇𝜖𝑇𝑜𝑡 =

(σ𝑖
𝑃𝑃𝐶,𝐼𝐶𝑃𝐶,𝐵𝐸𝐺𝑒 𝑁𝑇𝑖𝜖𝐷𝐶,𝑖)𝜖0𝜖𝜏1

𝜖𝐸1

For semi-inclusive visible mode, we only consider the data 
cleaning cuts to the daughter isotope decay (>100 keV 
events). 
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Final Results for Fully Inclusive Mode

• 𝑁𝑇𝜖𝑇𝑜𝑡 = (σ𝑖
𝑃𝑃𝐶,𝐼𝐶𝑃𝐶,𝐵𝐸𝐺𝑒 𝑁𝑇𝑖𝜖𝑃𝑆𝐷,𝑖

2 )𝜖𝐸1
𝜖𝜏2

𝜖𝐸2

For fully inclusive mode,  we consider all pulse-
shape analysis for the daughter isotopes and 
the grand-daughter isotopes decays.
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Background: Semi-Inclusive Visible Mode

• Main Background Sources:

− Muon-induced saturated events not tagged by the veto system.

− Random time coincidences with unrelated events.

• Random Coincidence Rate:

− Event rate (>100 keV) ≈ 10⁻⁴ Hz in the MJD.

− Expected random events after saturation: ≈ 0.6 (6342 × 10⁻⁴).

− Must occur in the same detector as the saturated event (0.6/35) ≈ 0.017 counts across ~35 
detectors.

• Muon Veto System:

− High efficiency with near-4π coverage.

• 6 out of 492 saturated events not tagged; 2 likely due to electrical issues (electrical 

breakdown), 3 lack of the corresponding daughter events.

• One non-muon-veto saturated event meets all analysis criteria.

• If more such events match the β-decay half-life of daughter isotopes, it would 

strengthen rare decay signal evidence.
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• Set a partial lifetime limit of ~1.2 × 10²⁶ 

years for fully inclusive tri-nucleon decays 

of ⁷⁶Ge. Used an exposure of 61.89 kg·yr.

• All tri-nucleon decays will end with 73mGe 

decay. 

• Developed an algorithm to detect two-step 

waveforms from ⁷³ᵐGe decay.

• No events observed matching ⁷³ᵐGe decay 

signature.

• MJD observed several events consistent 
with ⁷³ᵐGe decay detected, likely stem from 

cosmogenic ⁷³As decay. Phys. Rev. C 105, 

014617 (2022)

Comparison with GERDA Experiment 

2.9us

0.5 s
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Summary

• Using a full dataset with a total exposure of MAJORANA DEMONSTRATOR, the 

experiment set the one of the most stringent limits to date for rare 

multinucleon decay processes.

• New partial lifetime limits were established, including a record 

− 1.836×1026 yr for the 76Ge(ppp)→73Cu e+π+π+ decay mode,

− 1.827×1026 yr for the 76Ge(ppn)→73Zn e+π+ decay mode.

• These new limits significantly advance the search for physics beyond the 

Standard Model and highlight the potential of the HPGe detector technology for 

future experiments such as LEGEND-1000.
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backup
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Inverted Coaxial Point Contact Detectors

•Inverted coaxial point contact (ICPC) detectors are larger (>3 kg) than PPC 

detectors (up to 1.2 kg). MAJORANA operated 4 ICPCs from Aug. 2020 to Mar 2021

−Beneficial for background reduction in LEGEND

−Larger range of drift times requires more refined analysis techniques

−MAJORANA has demonstrated comparable performance with ICPCs
and PPCs. Best energy resolution for ICPCs to date!

ICPC

New charge trapping correction improves combined energy resolution of ICPC detectors

(example detector)
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