

Rare Multi-Nucleon Decays in MAJORANA DEMONSTRATOR (MJD)

Pinghan Chu, P-1

Oct, 30th, 2025

LA-UR-25-30209

Introduction

- Understanding baryon number violation is fundamental for explaining the stability of matter and possible new physics beyond the Standard Model.
- **MAJORANA DEMONSTRATOR:**
An ultra-low-background experiment designed to search for neutrinoless double-beta decay ($0\nu\beta\beta$) and rare multi-nucleon decay modes in high-purity germanium (^{76}Ge) detectors, located deep underground at the Sanford Underground Research Facility (SURF).
- Present results from the full dataset: the most stringent limits to date for rare multi-nucleon decay processes in germanium isotopes, probing lifetimes up to 10^{26} years.

History of the Universe

Dark Matter?

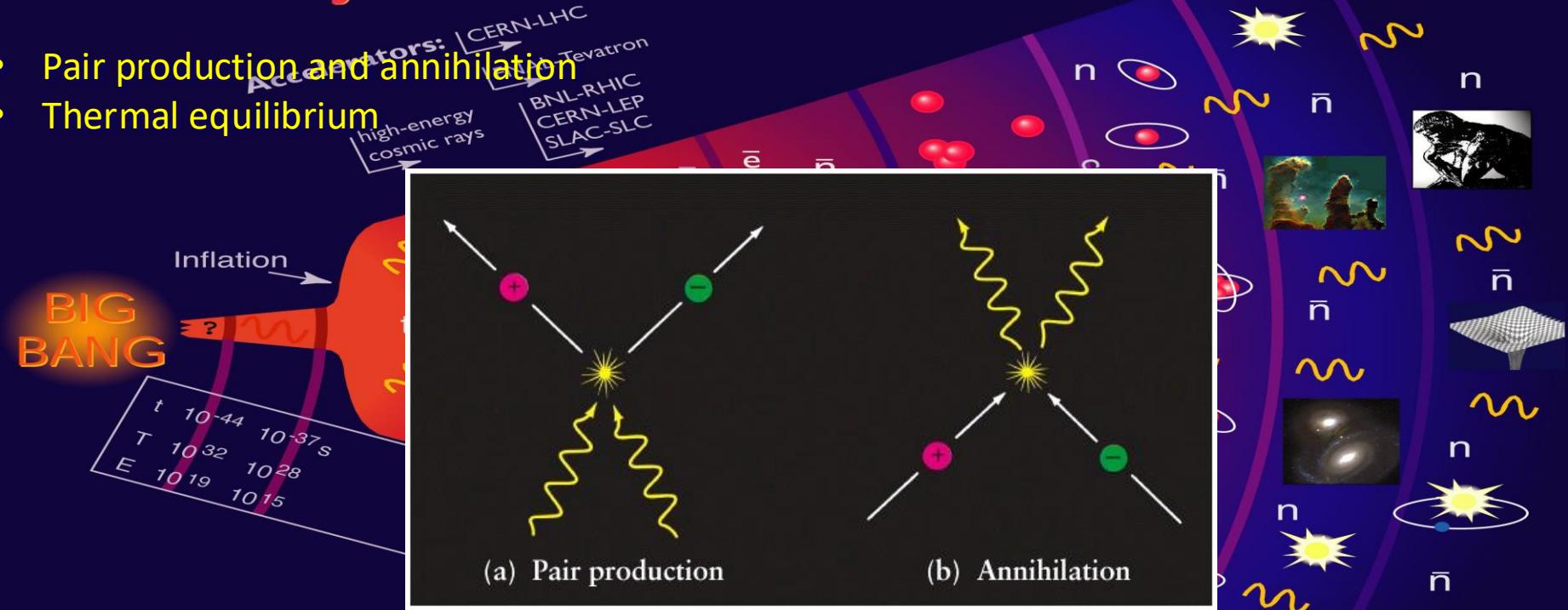
BIG BANG

Inflation

```

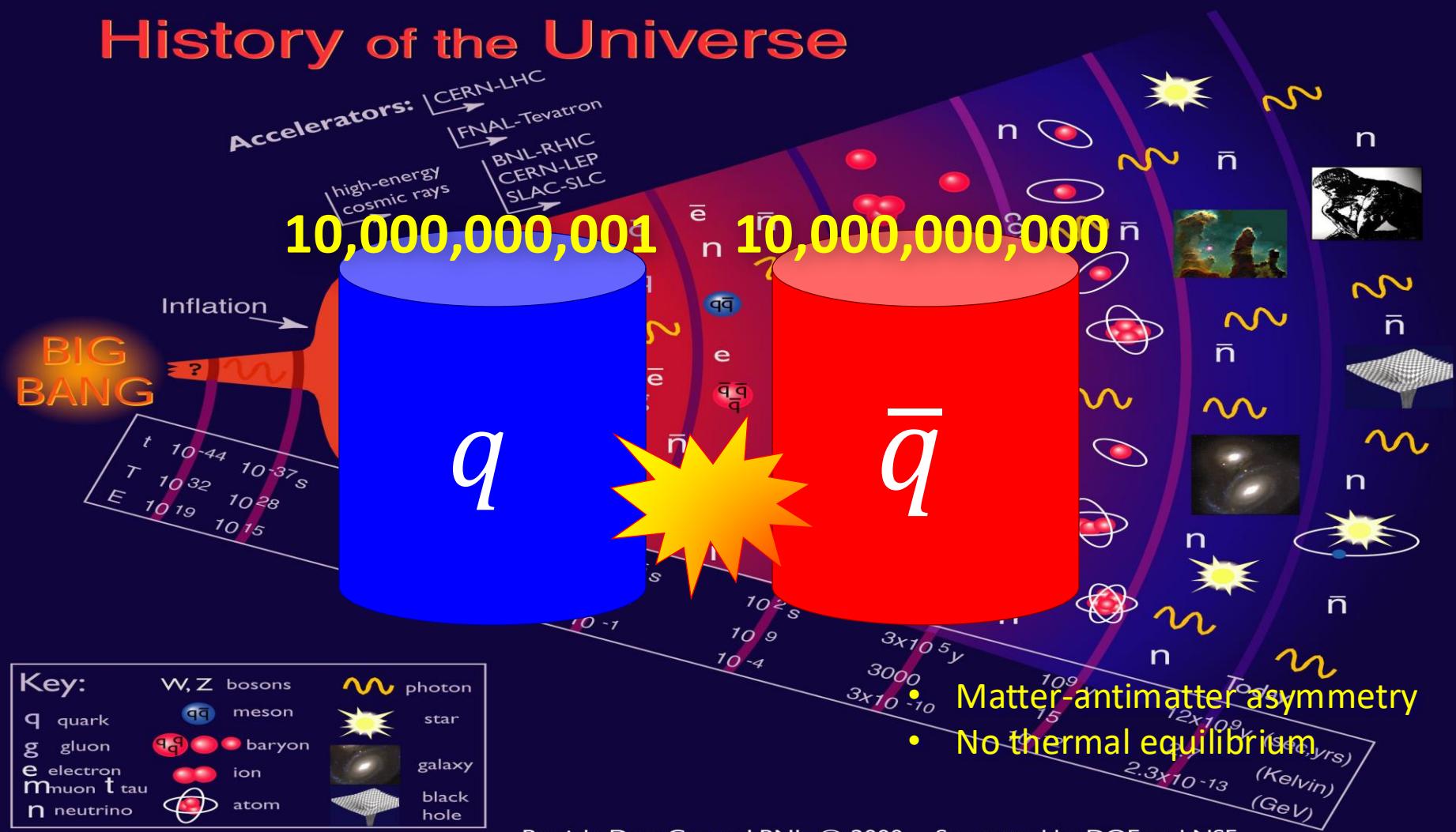
graph TD
    Accelerators[Accelerators:] --> CERNLHC[CERN-LHC]
    Accelerators --> FNALTev[FNAL-Tevatron]
    Accelerators --> BNLRHIC[BNL-RHIC]
    Accelerators --> CERNLEP[CERN-LEP]
    Accelerators --> SLACSLC[SLAC-SLC]
    CERNLHC --> HighEnergyCosmicRays[high-energy cosmic rays]
  
```

$$\begin{array}{ccc} t & 10^{-44} & 10^{-37} s \\ T & 10^{32} & \\ E & 10^{19} & 10^{28} \\ & & 10^{15} \end{array}$$

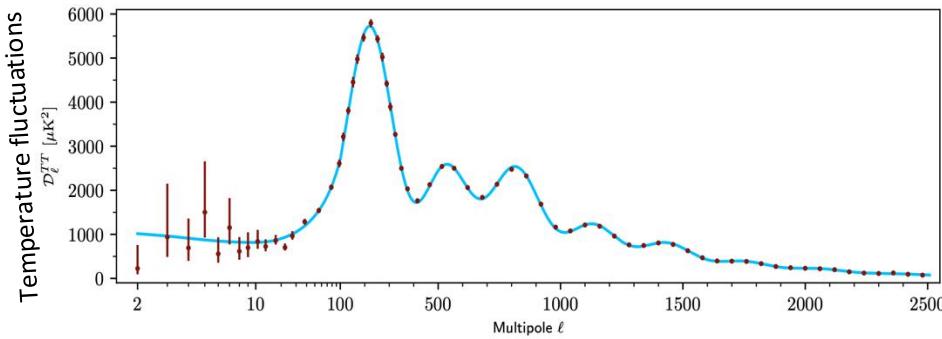
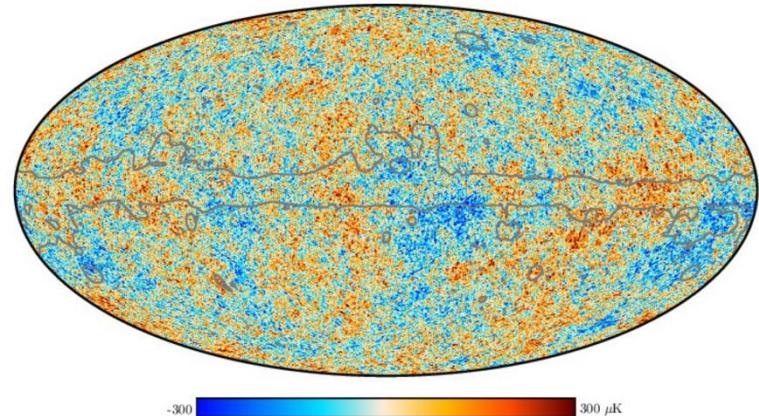

Article Data Group, LBNL, © 2000. Supported by DOE and NSF

Key:	W, Z	bosons		photon
q	quark		meson	
g	gluon		baryon	
e	electron		ion	
m	muon			galaxy
t	tau		atom	
n	neutrino			black hole

Particle Data Group, LBNL, © 2000. Supported by DOE and NSF

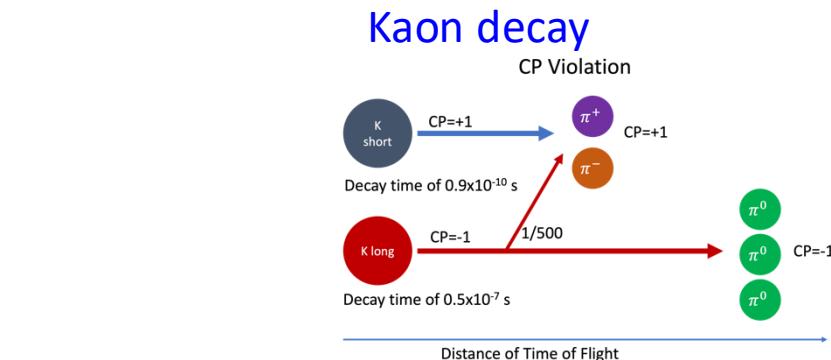
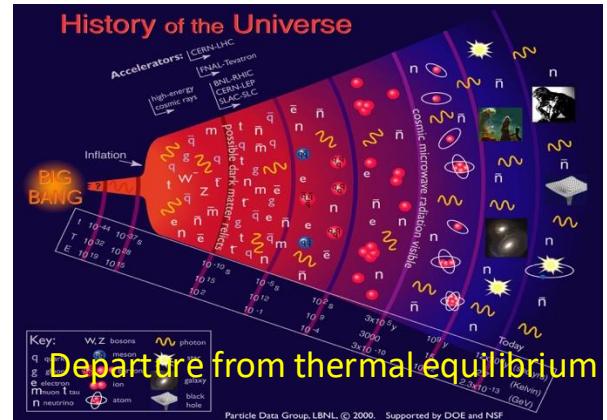

History of the Universe

- Pair production and annihilation
- Thermal equilibrium



Key:	
\mathbf{V}, \mathbf{Z}	bosons
q quark	$q\bar{q}$ meson
g gluon	$q\bar{q}g$ baryon
e electron	e^+e^- ion
m muon	$m\bar{m}$ atom
n neutrino	

History of the Universe

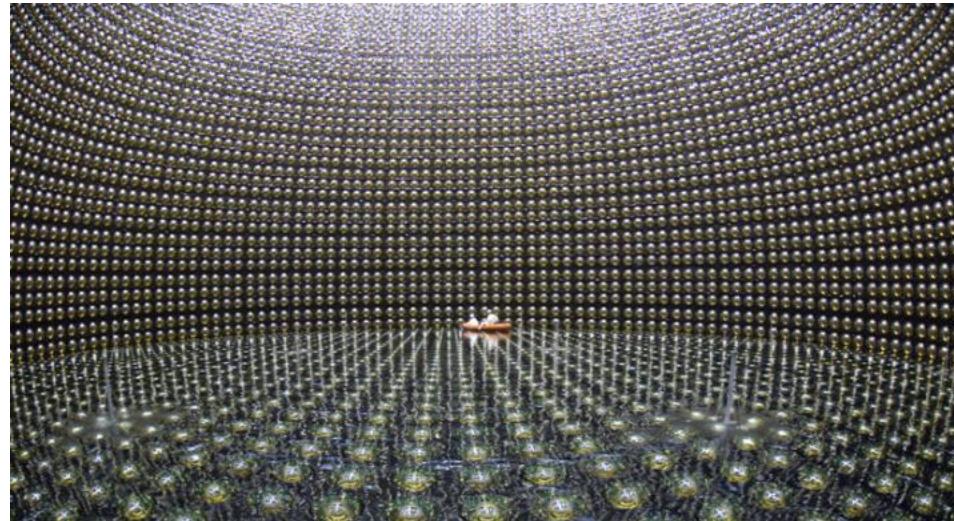
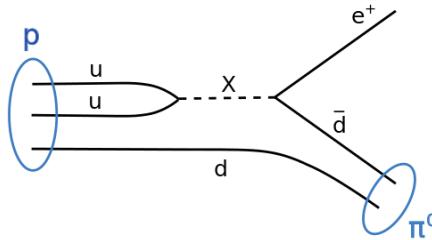
Matter-Antimatter Asymmetry



- Baryon asymmetry of Universe
 - Baryon/photon $\sim 6 \times 10^{-10}$ (Cosmic Microwave Background Radiation; Nobel Prize 2006)

Cosmic Microwave Background Radiation
(Planck, 2018, [arxiv:1807.06205](https://arxiv.org/abs/1807.06205))

Matter-Antimatter Asymmetry

- Baryon asymmetry of Universe
 - Baryon/photon $\sim 6 \times 10^{-10}$ (Cosmic Microwave Background Radiation; Nobel Prize 2006)
- Sakharov (Nobel Peace Prize 1975) conditions
 - Departure from thermal equilibrium
 - Charge-parity(CP) violation
 - Baryon number nonconservation
- The Universe cooled now.
- CP violation only observed in kaon (Nobel Prize 1980)and B meson decays
 - Kobayashi-Maskawa mechanism in Standard Model (CKM Matrix) (Nobel Prize 2008)
 - Baryon/photon $\sim 10^{-18}$
- No evidence for baryon number violation!
 - $0\beta\nu\nu$ (MJD, [PRL130.062501](#))
 - Tri-nucleon Decay (MJD, [PRC112. L022501](#))

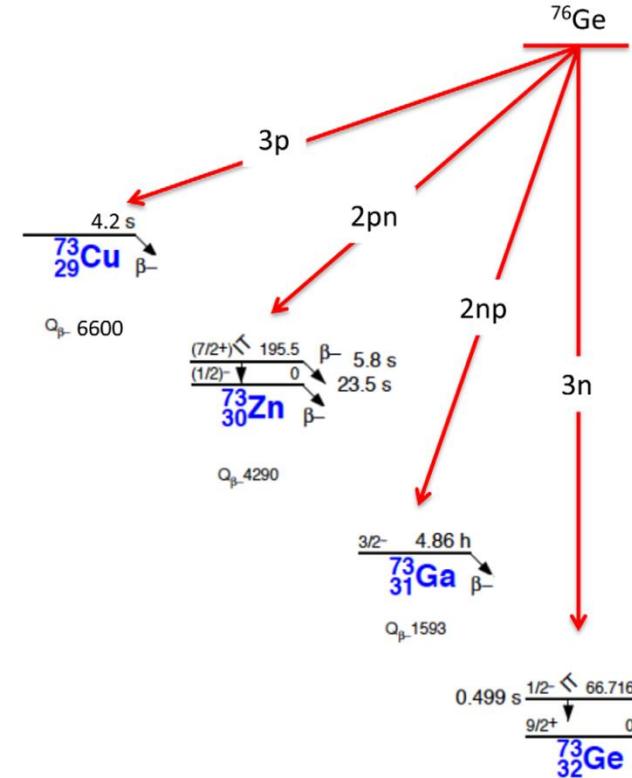
CKM Matrix

$$\begin{bmatrix} d' \\ s' \\ b' \end{bmatrix} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix} \begin{bmatrix} d \\ s \\ b \end{bmatrix}.$$

Origins and Early Theory of Baryon Decays

- The concept emerged in the context of **grand unified theories** (GUTs).
 - Predict proton decays
- The current limit is $\tau/B(p \rightarrow e^+\pi^0) > 2.4 \times 10^{34}$ yr (Super-Kamiokande, PRD 102.112011 (2020))

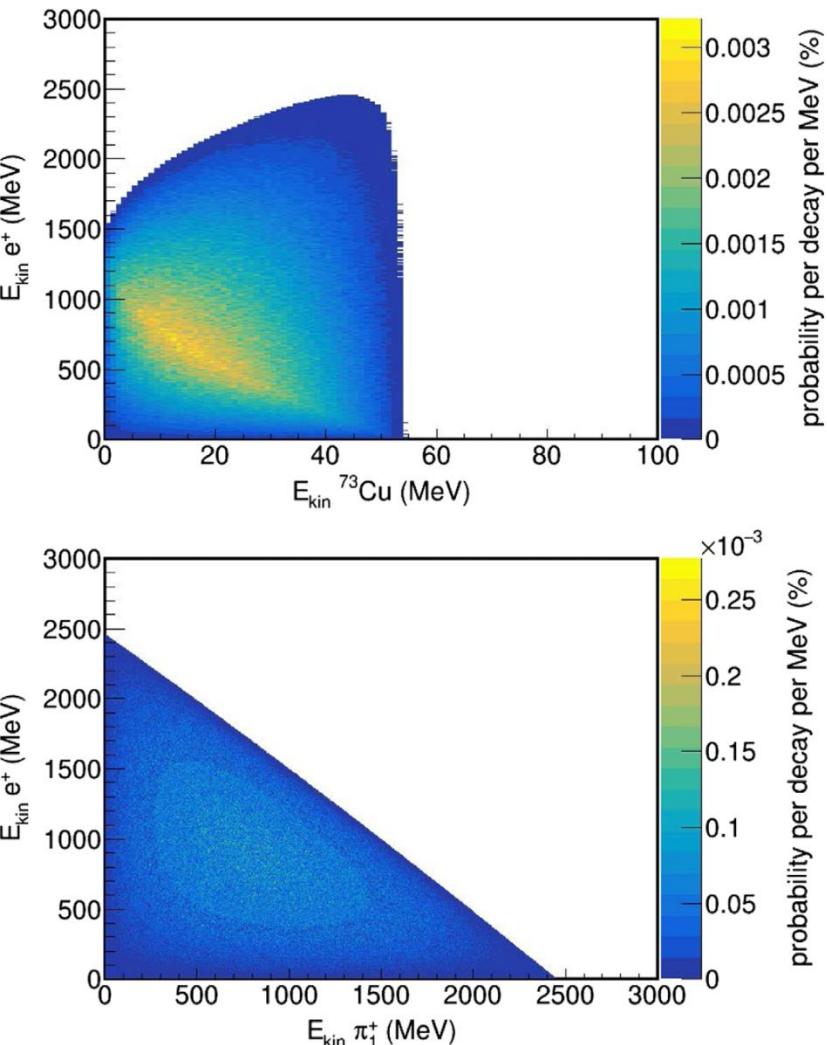
Experimental Efforts


- **Proton and Nucleon Decay Searches (underground experiments)**
 - Kamiokande / Super-Kamiokande, Soudan, SNO, etc
 - $p \rightarrow e^+ \pi^0, p \rightarrow \mu^+ \pi^0, p \rightarrow \bar{\nu} K^+, p \rightarrow e^+ K^0, p \rightarrow \mu^+ K^0$
- **Collider-Based Baryon Decay Studies**
 - LHC, Belle, etc
 - $t \rightarrow l^+ jj$ (where $l = e$ or μ), $\tau^- \rightarrow \Lambda \pi^-$
- **Neutron–Antineutron Oscillation**
 - European Spallation Source, SNO, Super-Kamiokande
 - $n \rightarrow \bar{n}$

Multi-nucleon Decays

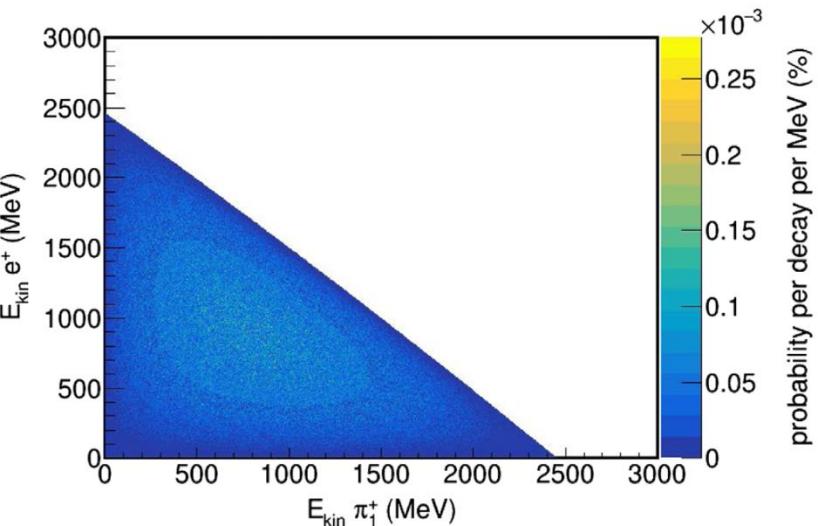
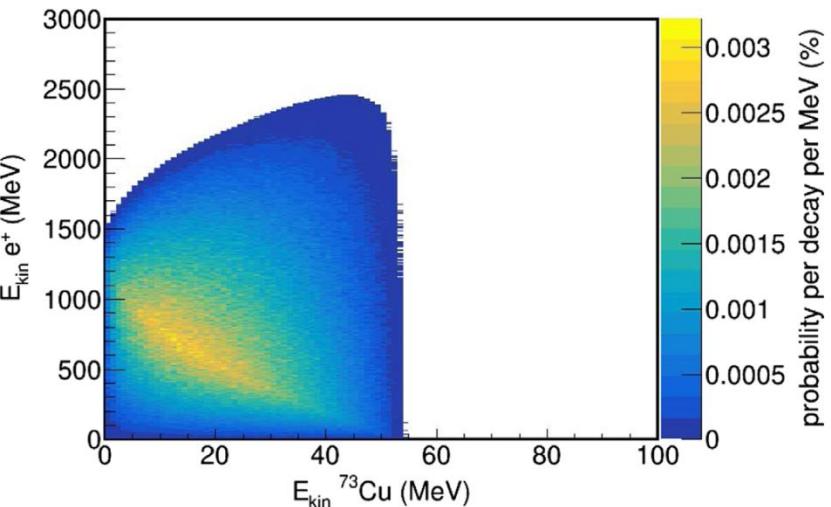
- Extension of Higgs sector or GUT-inspired models allow $\Delta B = 2$
 - Best limit is $> 4.04 \times 10^{32}$ yr (Super-K)
- The Z_6 model is the Standard Model extended by an additional discrete symmetry ($Z_2 \times Z_3$), i.e., the centers of SU(2) and SU(3).
 - Include the right-handed neutrinos to cancel anomalies.
 - K. S. Babu, I. Gogoladze, and K. Wang, Gauged baryon parity and nucleon stability, Phys. Lett. B 570, 32 (2003).
- This forbids all operators with $\Delta B = 1$ or $\Delta B = 2$, such as single proton decay or neutron–antineutron oscillations. Only $\Delta B = 3$ (such as triple nucleon decay) is permitted, but only via extremely high-dimension (dimension 15) operators.

Three-nucleon Decays in MAJORANA DEMONSTRATOR


- Semi-inclusive visible modes
 - $ppp \rightarrow e^+ \pi^+ \pi^+$, $ppn \rightarrow e^+ \pi^+$, $pnn \rightarrow e^+ \pi^0$, $nnn \rightarrow \bar{\nu} \pi^0$
 - Deposit large energy in the detectors
 - Cannot distinguish positrons or pions in MJD
 - The excited daughter can emit gammas (multiple detectors)
 - Search for emission of enormous energy and the following daughter isotope decay
- Fully inclusive modes
 - $^{76}\text{Ge}(ppp) \rightarrow ^{73}\text{Cu} + X$, $^{76}\text{Ge}(ppn) \rightarrow ^{73}\text{Zn} + X$,
 - $^{76}\text{Ge}(pnn) \rightarrow ^{73}\text{Ga} + X$, $^{76}\text{Ge}(nnn) \rightarrow ^{73}\text{Ge} + X$
 - X can deposit energy in detectors (visible) or escape from detectors (invisible)
 - Search for the daughter isotope decays and the grand-daughter isotope decays
- Don't consider the proton or neutron emission (excited daughter isotopes). Calculate partial lifetime.

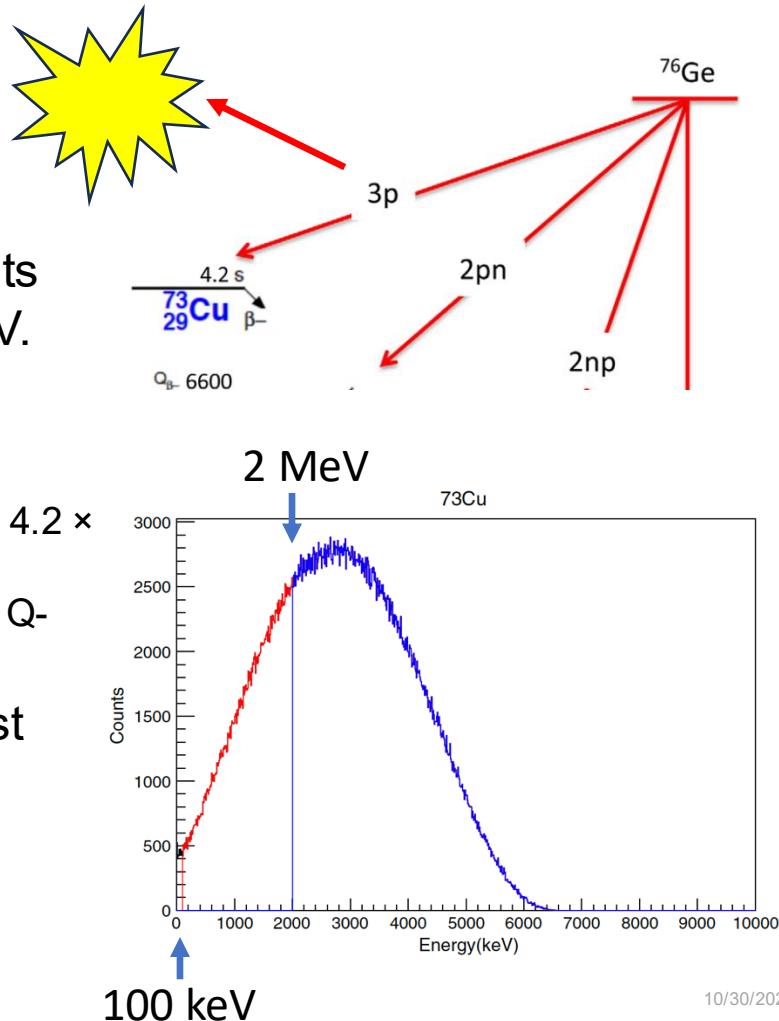
Semi-inclusive Visible Modes

: Event Selection 1

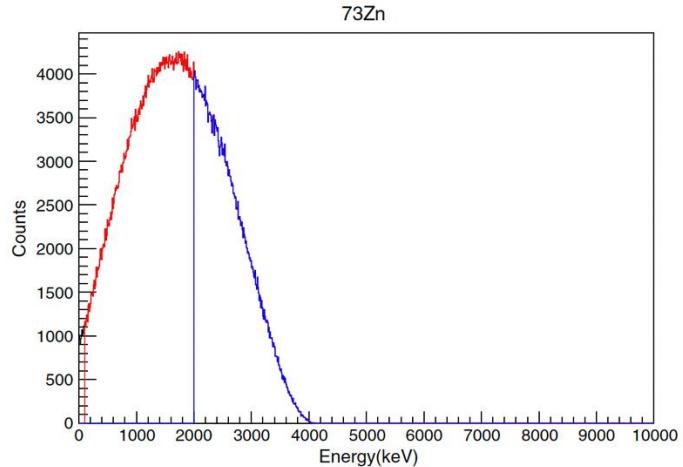
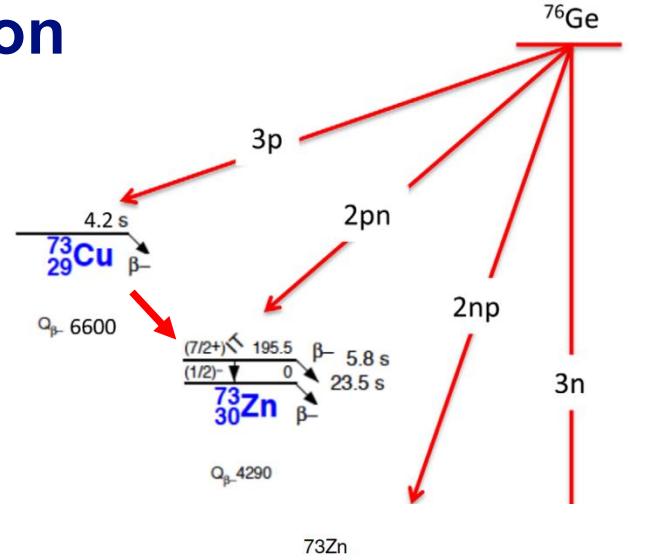


- $ppp \rightarrow e^+ \pi^+ \pi^+$, $ppn \rightarrow e^+ \pi^+$, $pnn \rightarrow e^+ \pi^0$, $nnn \rightarrow \bar{\nu} \pi^0$
- Visible particles (e.g., positrons, pions) deposit large amounts of energy *in* germanium detectors (three-nucleon mass ≈ 3 GeV).
- Event selection (Step 1): identify high-energy deposits (>10 MeV) — saturated events not tagged as muons (Ge detector energy threshold $\sim 10-11$ MeV).

Semi-inclusive Visible Modes

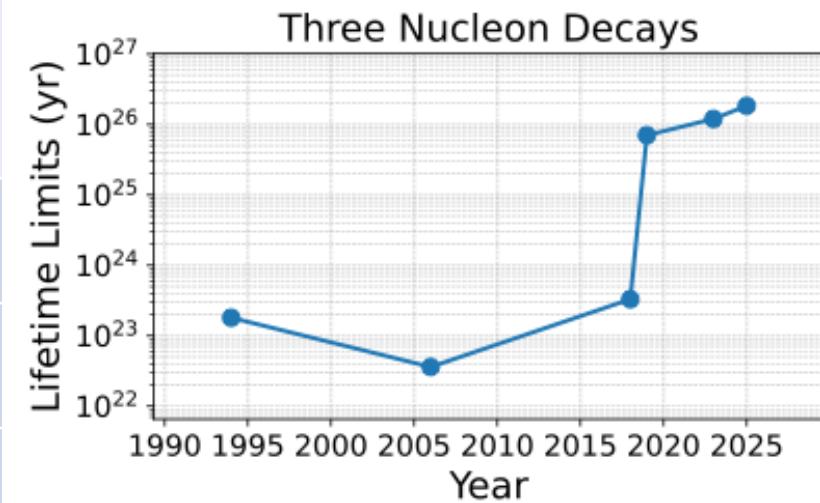
: Event Selection 1


- Selection efficiency: ~99%. Calculated using GEANT4 simulations.
 - Simulate energy release from 3-nucleon decays
 - Track daughter particles (isotopes, positrons, pions, etc.)
 - Propagate particles within germanium detectors
 - Calculate fraction of events depositing >10 MeV (ϵ_0)

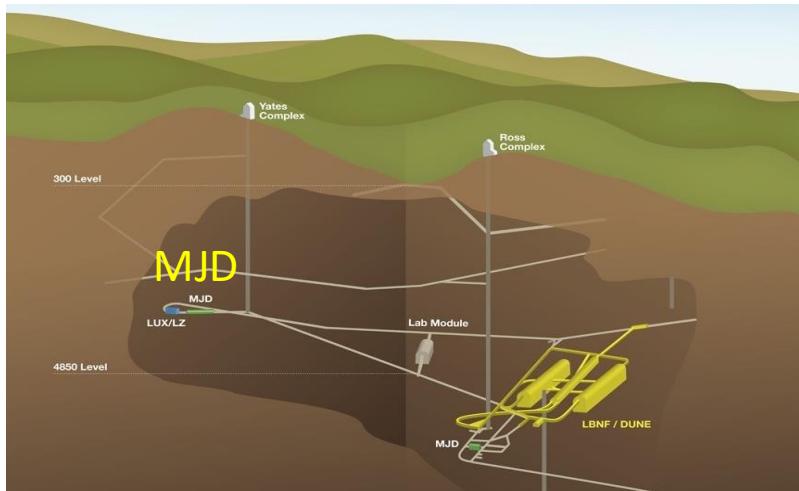
Semi-inclusive Visible Modes



: Event Selection 2

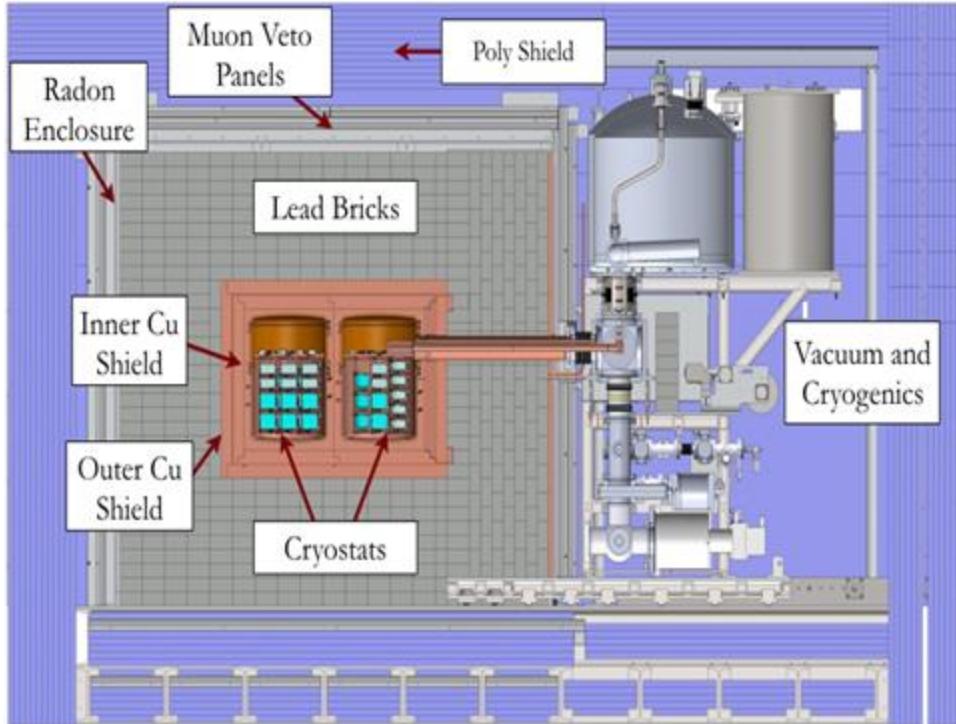
- Daughter isotopes are unstable.
- After the first saturated event, select events within $5 \times$ half-life where energy > 100 keV.
 - The $5 \times T_{1/2}$ window corresponds roughly to a 5σ coverage (ϵ_{τ_1}). Must account for run gaps due to calibrations, detector downtime, or power outages.
 - Example: for ^{73}Cu , $T_{1/2} = 4.2$ s \rightarrow search window $= 4.2 \times 5 = 21$ s.
 - Calculate the energy efficiency from 100 keV up to Q -value for each decay channel. (ϵ_{E_1})
- This approach is possible because the first events are very rare (thanks to the highly efficient muon tagging), and the MJD background is extremely low.


Fully Inclusive Modes: Event Selection

- $^{76}\text{Ge}(ppp) \rightarrow ^{73}\text{Cu} + X, ^{76}\text{Ge}(ppn) \rightarrow ^{73}\text{Zn} + X,$
- $^{76}\text{Ge}(pnn) \rightarrow ^{73}\text{Ga} + X, ^{76}\text{Ge}(nnn) \rightarrow ^{73}\text{Ge} + X$
- X can deposit energy in detectors (visible) or escape from detectors (invisible)
- We don't consider X but the decays of the daughter isotopes and the following grand-daughter isotopes.
- For example, ^{73}Cu can decay to ^{73}Zn and ^{73}Zn can decay to ^{73}Ga .
- Select the first event of energy > 2 MeV. There are more low energy backgrounds. (ϵ_{E_1})
- After the $5 \times T_{1/2}$ window of the grand-daughter isotope (ϵ_{τ_2}), search for the second event of energy > 2 MeV. (ϵ_{E_2})
- Calculate the energy efficiency from 2 MeV up to Q-value for each decay channel. Exclude the multi-site events because of the multi-site cuts.


Experimental Efforts for Three-nucleon Decays

Experiment	Isotope	Channels	Lifetime Limits (10^{23} yr)	Year
NaI(Tl)	^{127}I	nnn (invisible)	1.8	(1994)
DAMA/ LXe	^{136}Xe	pnn (invisible)	0.14	(2006)
		ppn (invisible)	0.27	
		ppp (invisible)	0.36	
EXO-200	^{136}Xe	ppn (invisible)	1.9	(2018)
		ppp (invisible)	3.3	
MJD	^{76}Ge	ppn ($e^+\pi^+$)	703	(2019)
		ppp ($e^+\pi^+\pi^+$)	678	
GERDA	^{76}Ge	ppp, ppn, pnn (All inclusive)	1200	(2023)
MJD	^{76}Ge	ppn ($e^+\pi^+$)	1827	(2025)
		ppp ($e^+\pi^+\pi^+$)	1836	


Location

- **Earth shielding blocks cosmic rays**
- Sanford Underground Research Facility (SURF): Located in Lead, SD, at a depth of 1480 m
- Equivalent to \sim 4300 m water overburden (m.w.e.)
- Muon flux reduced from \sim 10⁻² /cm²/s (surface) to \sim 5 \times 10⁻⁹ /cm²/s (underground)
- **Site of the historic Homestake experiment** — Ray Davis's pioneering solar neutrino detection (Nobel Prize 2002)

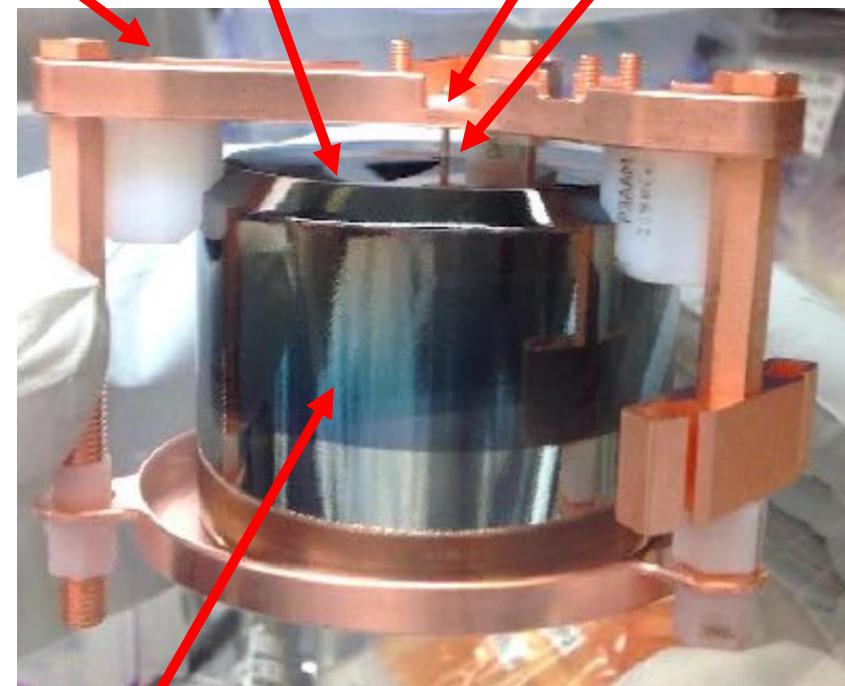
Low Background

- **Active veto:** muon detection panels
- **Passive shielding:** polyethylene, underground lead, commercial + electroform copper layers
- **Radon suppression:** continuous nitrogen purge

Big Detector Arrays

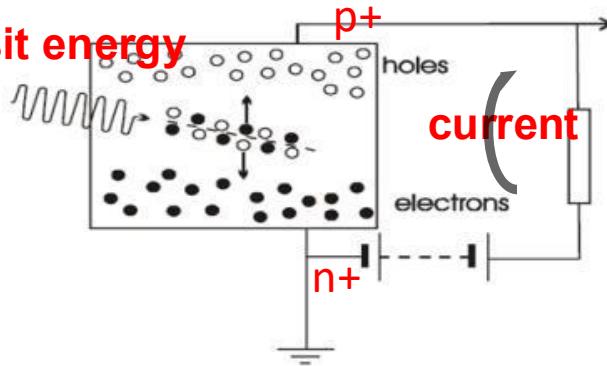
- Sensitive to events of strange patterns

Detectors


- Enriched Germanium (^{76}Ge) detector ~ 88% ^{76}Ge enrichment
- Excellent resolution: peak width/energy ~ 0.1%
- Low threshold ~ 1 keV
- High-purity semiconductor: Ge bandgap ~ 0.8 eV

Electroform copper

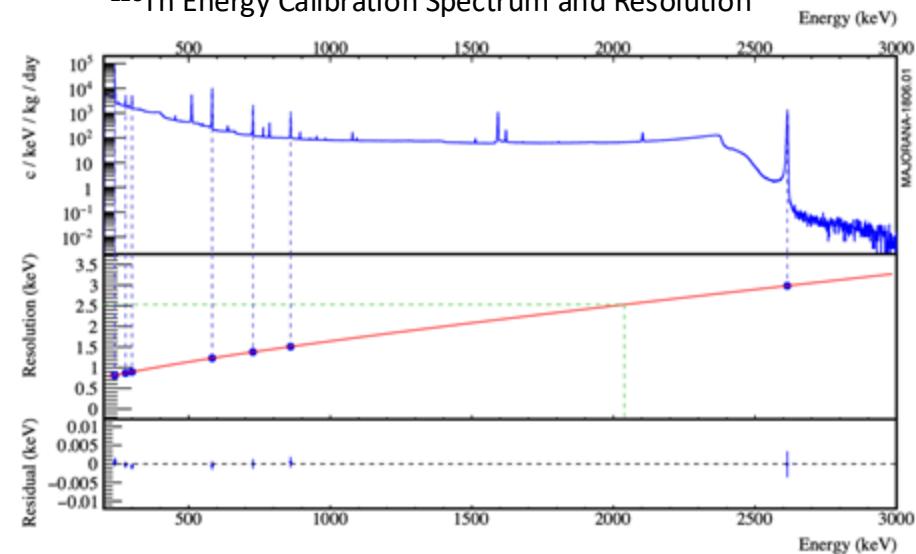
Passivated surface.


Low mass JFET

Point contact (p+)

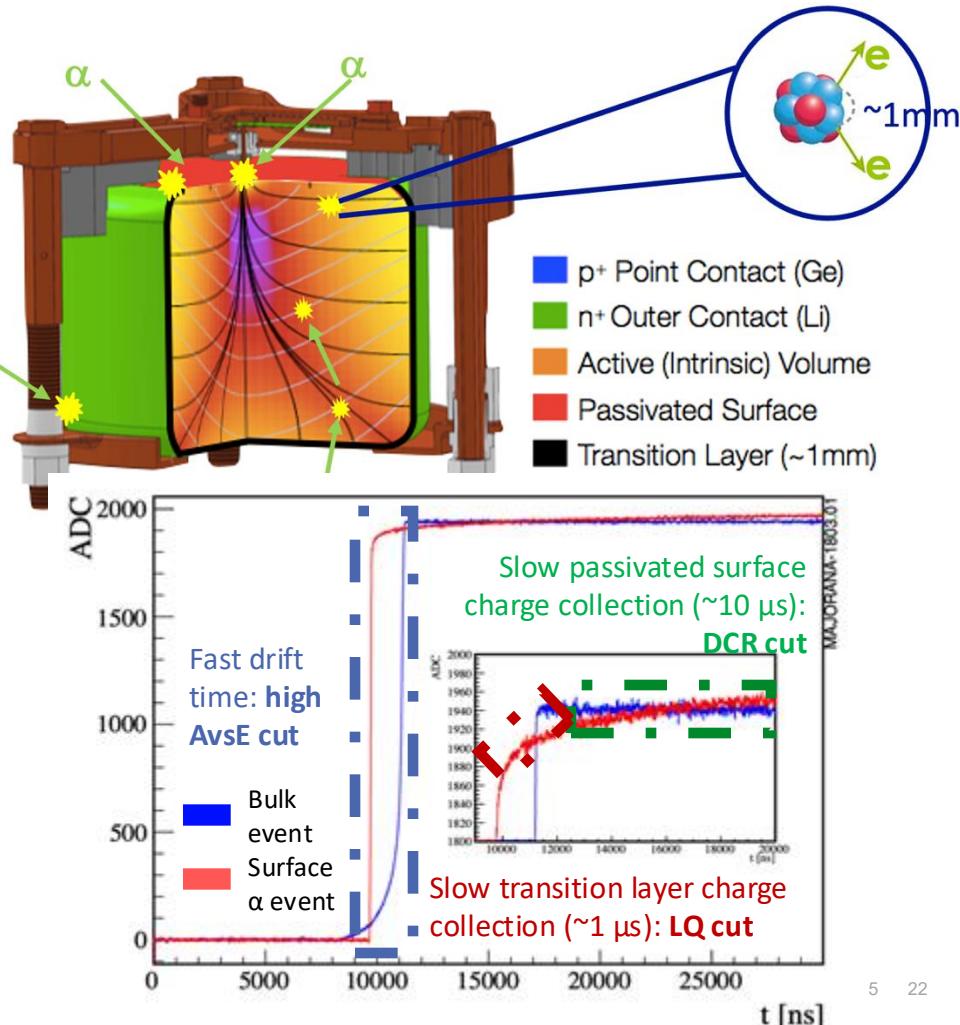
Bias voltage

Deposit energy

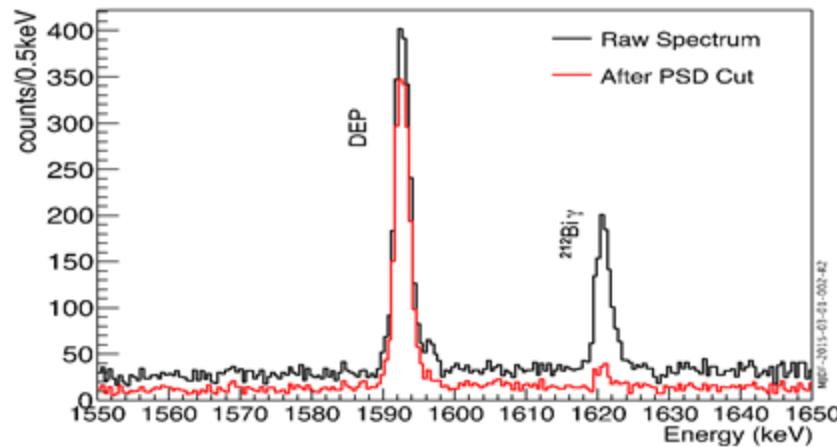
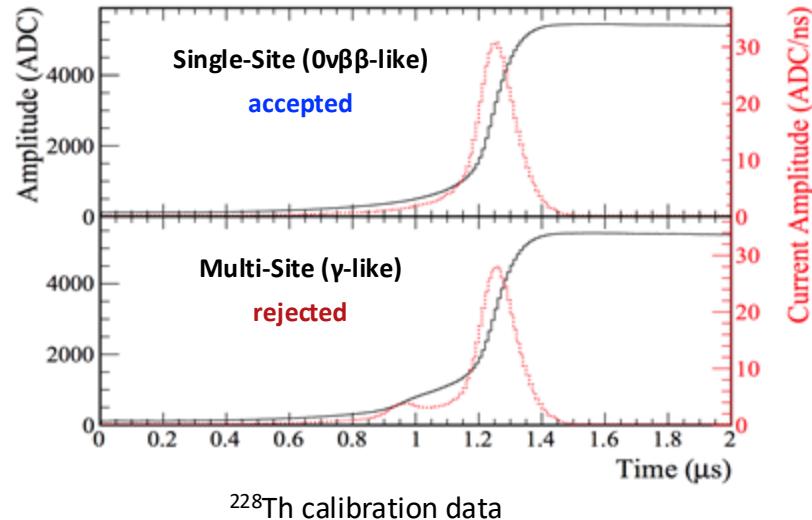
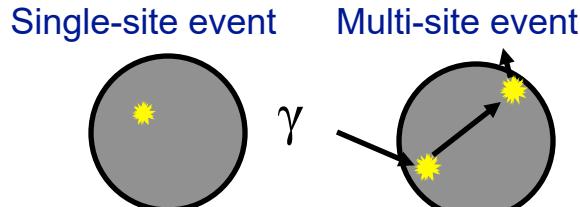

lithium-diffused surface (n+)

Energy Reconstruction

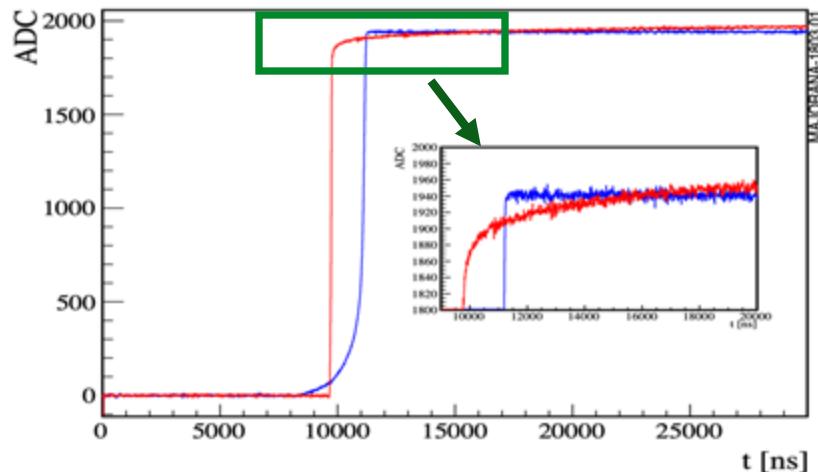
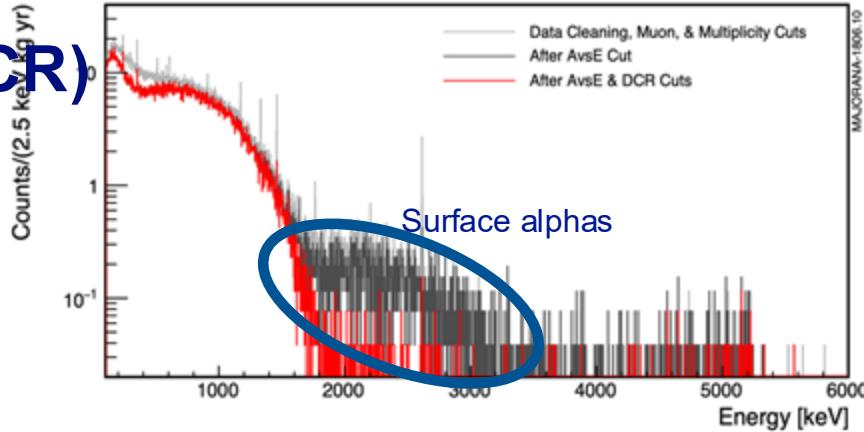
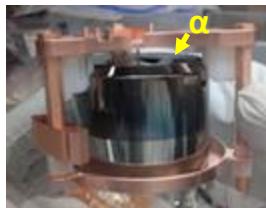
- Calibrated on weekly ^{228}Th calibration data, retuned on full data set
- Energy estimated via optimized trapezoidal filter of ADC nonlinearity-corrected traces with charge-trapping correction
- Energy resolution (2.5 keV FWHM @ 2039 keV) and linearity (< 0.2 keV up to 3 MeV) a record for neutrinoless double-beta decay searches
- Charge trapping correction improves resolution at 2039 keV from 4 keV to 2.5 keV FWHM



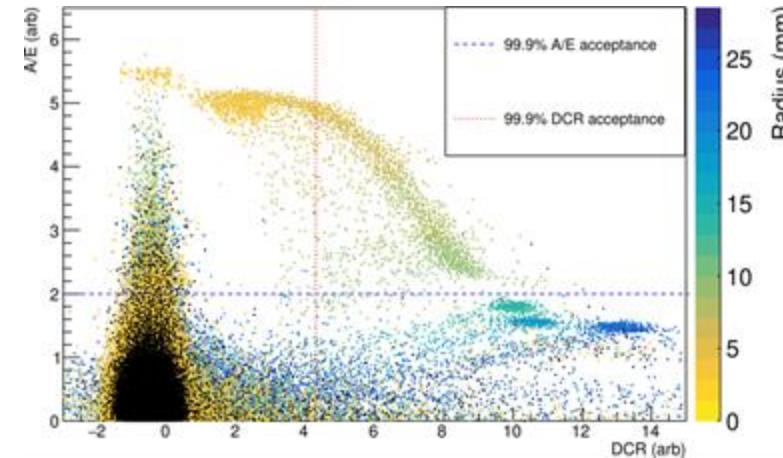
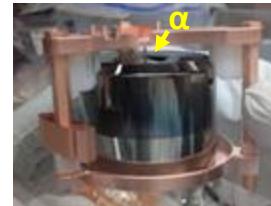
^{228}Th Energy Calibration Spectrum and Resolution




Background Rejection

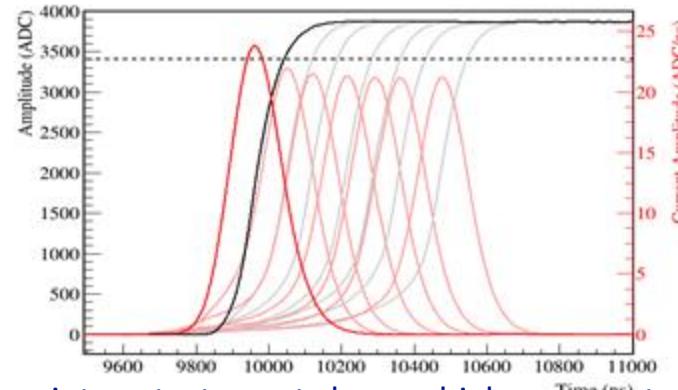
- Point-contact HPGe detectors are essential for background rejection.
- Pulse-shape analysis (PSD):
 - **AvsE**: multiple-site event rejection — compares maximum waveform slope to energy, primarily rejects external γ events.
 - **DCR (Delayed Charge Recovery)**: identifies slow charge collection from surface α contamination (mainly from radon decay chain).
 - **LQ (Late Charge)**: flags partial charge collection in the transition layer, often from β or γ interactions.




Multi-Site Events Cut (AvsE)

- Amplitude of current pulse is suppressed for a multi-site event compared to a single-site event of the same event Energy (AvsE)
- Tuned on ^{228}Th calibration data to accept 90% of single-site DEP events. Rejects >50% of the Compton continuum near $Q_{\beta\beta}$

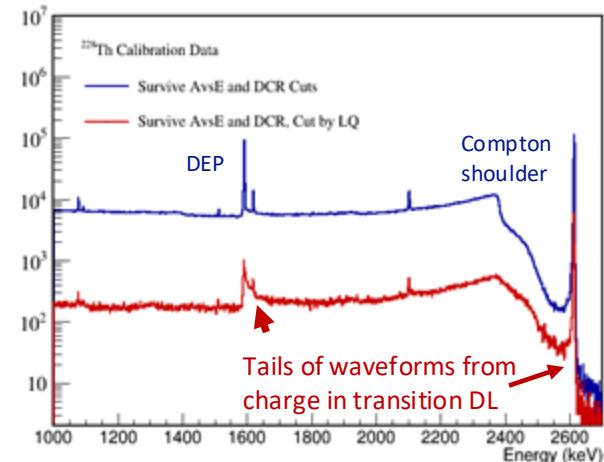


Passivated Surface Events (DCR)

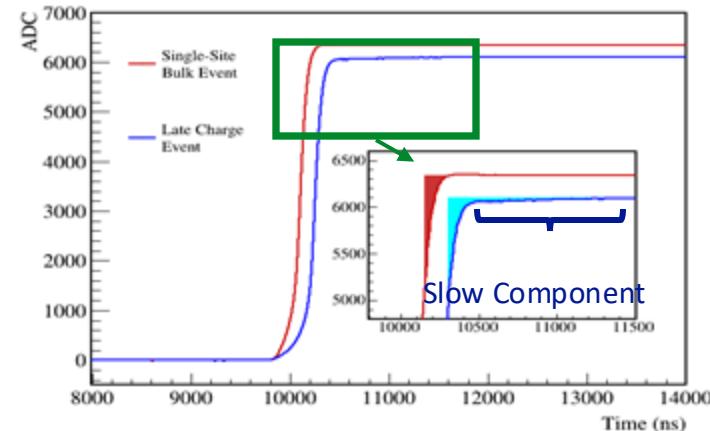
- Alpha particles incident on the passivated surfaces have a degraded energy reconstruction and can fall near $Q_{\beta\beta}$.
- Charge trapped at passivated surface is slowly rereleased (~ 10 s of μ s): Delayed Charge Recovery (DCR)
 - Cut using slope of tail after rising edge
 - Tuned to keep 99% of bulk events
- Suspect α contamination near passivated surface ^{210}Po from ^{222}Rn exposure



Surface Cuts: Point-Contact Events (AvsE)

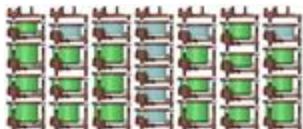
- Alphas incident on the point contacts release less delayed charge and evade the DCR cut.
- But they have steeper rising edges, so the higher current amplitude events can be removed using the AvsE cut.


Joint A/E-DCR spectrum from TUBE scanner, with an α -source scanning across the passivated surface of a PPC detector


Near point contact events have a higher current amplitude

Surface Cuts: Transition Dead-Layer Events (LQ)

- Events in lithiated n-plus surfaces experience severe energy degradation and slow ($\sim 1\text{-}2 \mu\text{s}$) rerelease of charge. Events with a partial charge deposit in this transition layer are potential backgrounds!
- Cut waveforms with a slow component using “Late Charge” (LQ): area above rising edge of waveform after 80% of charge is collected
- Tune to keep $>99\%$ of single-site bulk events using ^{208}TI double escape events



LQ cut leaves bulk single-site structures in ^{228}Th calibration data intact

Run Configuration and Timeline

Module 1

Deploy Module 1 in shield

16.8 kg (20) ^{enr}Ge
5.6 kg (9) ^{nat}Ge

Mar. 2021:

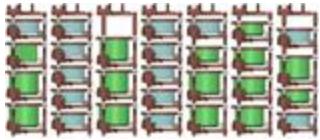
Stopped ^{enr}Ge Operation
Removed all ^{enr}Ge for
LEGEND-200

2015

2016

2017

2018


2019

2020

2021

2022

Module 2

Deploy Module 2 in shield

Mirion/Canberra

BEGe
^{nat}Ge

~0.6 kg

Ortec

PPC
^{enr}Ge

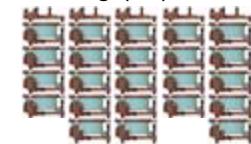
0.6 - 1.2 kg

Ortec ICPC

^{enr}Ge

1.3 - 2.1 kg

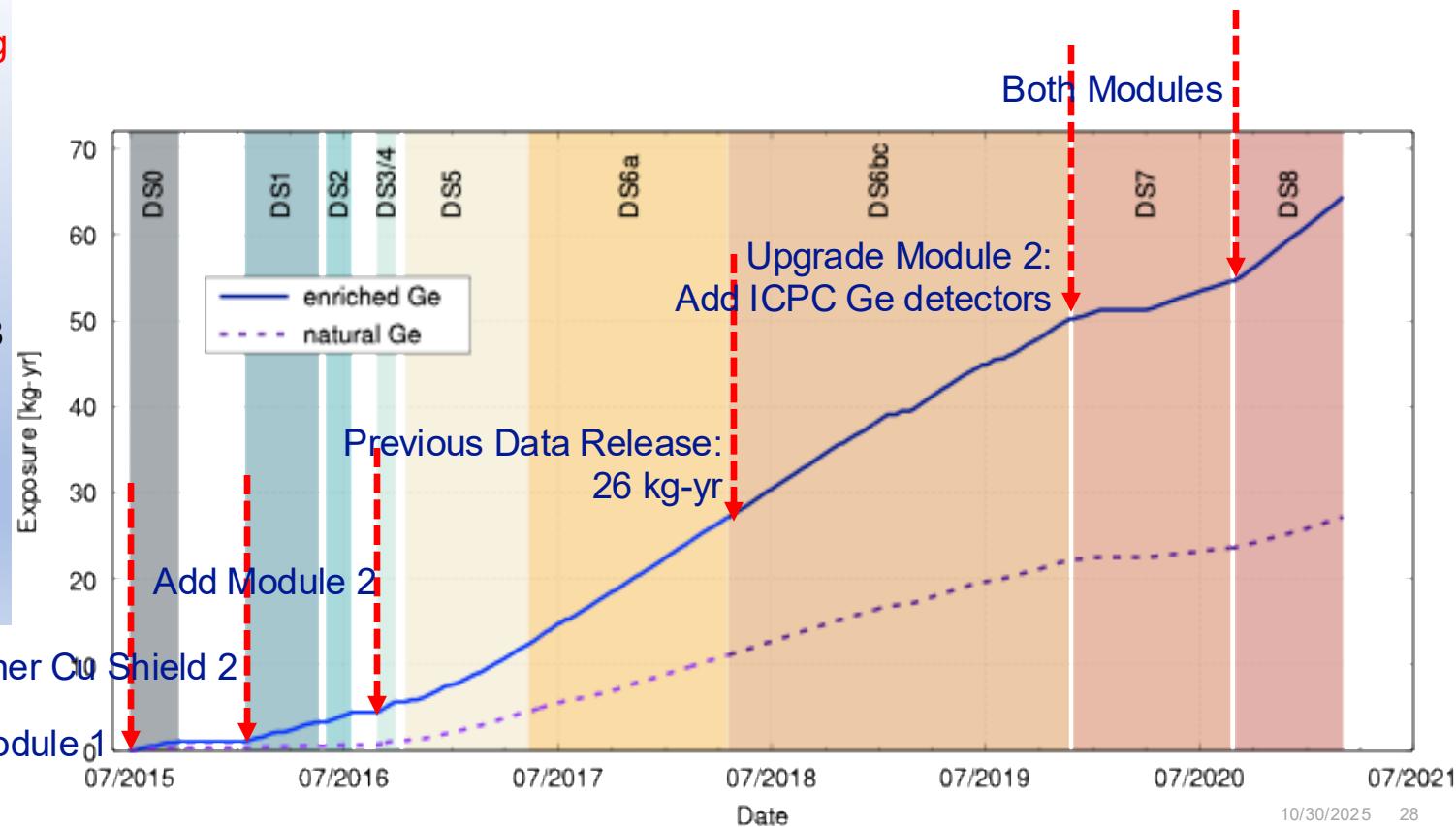
12.9 kg (15) ^{enr}Ge
8.8 kg (14) ^{nat}Ge


14.1 kg (13) ^{enr}Ge
8.8 kg (14) ^{nat}Ge

6.7 kg (4) as ICPC

Cable/Connector Upgrade of Module 2

Removed 5 PPC detectors for LEGEND Testing
Installed 4 LEGEND ICPC Detectors


14.3 kg (23) ^{nat}Ge

Operation of Module 2.
with natural Ge detectors.
Now with ^{180m}Ta

Exposure

- PPC (87.4% ^{76}Ge , 12.6% ^{74}Ge): **61.64 kg yr**
- ICPC (88% ^{76}Ge , 12% ^{74}Ge): **2.82 kg yr**
- BEGe (20.5% ^{70}Ge , 27.4% ^{72}Ge , 7.8% ^{73}Ge , 36.5% ^{74}Ge , 7.8% ^{76}Ge): **27.4 kg yr**
- Account for run gaps due to calibrations, detector downtime, or power outages.

Search Candidates for Semi-inclusive Visible

- The longest $T_{1/2}$ is 1268.4 s so $5 \times T_{1/2}$ is 6342 s.
- One potential event for semi-inclusive visible mode
 - Energy of first event > 11558 keV
 - Energy of second event: 147 keV
 - Time difference between first and second events: 1712 s
 - Satisfy
 - $^{76}\text{Ge}(\text{pn}) \rightarrow ^{74}\text{Ga} + \pi^0 + \pi^+$
 - $^{73}\text{Ge}(\text{pnn}) \rightarrow ^{70}\text{Ga} + e^+ + \pi^0$
 - $^{72}\text{Ge}(\text{pn}) \rightarrow ^{70}\text{Ga} + \pi^0 + \pi^+$
 - $^{70}\text{Ge}(\text{nnn}) \rightarrow ^{67}\text{Ge} + \bar{\nu} + \pi^0$

Isotope	$T_{1/2}$ (s)	Q (MeV)
^{73}Cu	4.2	6.6
^{73}Zn	24.5	4.1
^{74}Zn	95.6	2.3
^{74}Ga	487.2	5.4
^{71}Cu	19.4	4.6
^{71}Zn	147	2.8
^{70}Cu	44.5	6.6
^{70}Ga	1268.4	1.7
^{69}Cu	171	2.7
^{67}Ge	1134	4.2

Search Candidates for Fully Inclusive

- One potential event for fully inclusive mode
 - Energy of first event: 2294 keV
 - Energy of second event: 2614 keV
 - Time difference between first and second events: 1657 s
 - Satisfy no channels

Isotope	$T_{1/2}$ (s)	Q (MeV)
^{73}Cu	4.2	6.6
^{73}Zn	24.5	4.1
^{74}Zn	95.6	2.3
^{74}Ga	487.2	5.4
^{71}Cu	19.4	4.6
^{71}Zn	147	2.8
^{70}Cu	44.5	6.6
^{70}Ga	1268.4	1.7
^{69}Cu	171	2.7
^{67}Ge	1134	4.2

The Partial Lifetime Limit

- The partial lifetime limit is calculated as
 - $\tau > \frac{NT\epsilon_{tot}}{S}$
 - NT is exposure, ϵ is the efficiency and S is the signal upper limit corresponding to Feldman-Cousins 90% confidence level.
- In this study, we considered all detectors including enriched and natural detectors; need to calculate PPC, ICPC, BEGe separately (And each has its own efficiency study).
- The data cleaning cuts discard nonphysical waveforms, pileup waveforms, pulser events.
- The Pulse-shape analysis (PSD) cuts, including AvsE, DCR, and LQ, discard background events.

I	PPC	ICPC	BEGe
NT_i	61.64 kg yr	2.82 kg yr	27.383 kg yr
$\epsilon_{DC,i}$	99.1%	99.9%	99.9%
$\epsilon_{PSD,i}$	86.1%	81.0%	86.1%

Final Results for Semi-inclusive Visible Mode

- $$NT\epsilon_{Tot} = (\sum_i^{PPC,ICPC,BEGe} NT_i \epsilon_{DC,i}) \epsilon_0 \epsilon_{\tau_1} \epsilon_{E_1}$$

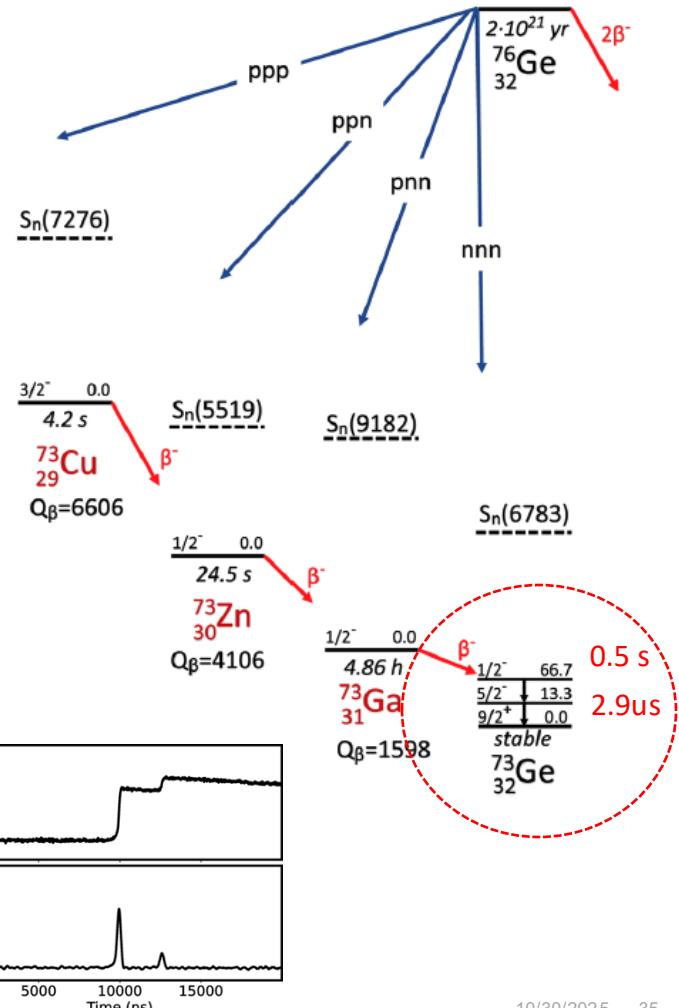
For semi-inclusive visible mode, we only consider the data cleaning cuts to the daughter isotope decay (>100 keV events).

Decay Mode	ϵ_0	ϵ_{τ_1}	ϵ_{E_1}	ϵ_{τ_2}	ϵ_{E_2}	$\sum_i NT_i \epsilon_i$ (10^{24} atom yr)	$NT\epsilon_{Tot}$ (10^{24} atom yr)	Total candidates	S (counts)	τ (10^{24} yr)
Semi-inclusive Visible										
$^{76}\text{Ge}(ppp) \rightarrow ^{73}\text{Cu } e^+ \pi^+ \pi^+$	0.998	0.969	0.996	N.A.	N.A.	465.1	448.0	0	2.44	>183.6
$^{76}\text{Ge}(ppn) \rightarrow ^{73}\text{Zn } e^+ \pi^+$	0.999	0.969	0.990	N.A.	N.A.	465.1	445.8	0	2.44	>182.7
$^{76}\text{Ge}(pp) \rightarrow ^{74}\text{Zn } \pi^+ \pi^+$	0.994	0.968	0.972	N.A.	N.A.	465.1	435.0	0	2.44	>178.3
$^{76}\text{Ge}(pn) \rightarrow ^{74}\text{Ga } \pi^0 \pi^+$	0.979	0.964	0.991	N.A.	N.A.	465.1	435.0	1	4.36	>99.8
$^{74}\text{Ge}(ppp) \rightarrow ^{71}\text{Cu } e^+ \pi^+ \pi^+$	0.998	0.969	0.993	N.A.	N.A.	147.2	141.3	0	2.44	>57.9
$^{74}\text{Ge}(ppn) \rightarrow ^{71}\text{Zn } e^+ \pi^+$	0.999	0.967	0.982	N.A.	N.A.	147.2	139.6	0	2.44	>57.2
$^{73}\text{Ge}(ppp) \rightarrow ^{70}\text{Cu } e^+ \pi^+ \pi^+$	0.998	0.968	0.996	N.A.	N.A.	17.6	16.9	0	2.44	>6.9
$^{73}\text{Ge}(pnn) \rightarrow ^{70}\text{Ga } e^+ \pi^0$	0.999	0.958	0.867	N.A.	N.A.	17.6	14.6	1	4.36	>3.3
$^{73}\text{Ge}(pp) \rightarrow ^{71}\text{Zn } \pi^+ \pi^+$	0.994	0.967	0.982	N.A.	N.A.	17.6	16.6	0	2.44	>6.8
$^{72}\text{Ge}(ppp) \rightarrow ^{69}\text{Cu } e^+ \pi^+ \pi^+$	0.998	0.967	0.973	N.A.	N.A.	62.1	58.4	0	2.44	>23.9
$^{72}\text{Ge}(pn) \rightarrow ^{70}\text{Ga } \pi^0 \pi^+$	0.979	0.958	0.867	N.A.	N.A.	62.1	50.5	1	4.36	>11.6
$^{70}\text{Ge}(nnn) \rightarrow ^{67}\text{Ge } \bar{\nu} \pi^0$	0.952	0.959	0.972	N.A.	N.A.	46.5	41.3	1	4.36	>9.5

Final Results for Fully Inclusive Mode

- $$NT\epsilon_{Tot} = (\sum_i^{PPC,ICPC,BEGe} NT_i \epsilon_{PSD,i}^2) \epsilon_{E_1} \epsilon_{\tau_2} \epsilon_{E_2}$$

For fully inclusive mode, we consider all pulse-shape analysis for the daughter isotopes and the grand-daughter isotopes decays.


Decay Mode	ϵ_0	ϵ_{τ_1}	ϵ_{E_1}	ϵ_{τ_2}	ϵ_{E_2}	$\sum_i NT_i \epsilon_i$ (10^{24} atom yr)	$NT\epsilon_{Tot}$ (10^{24} atom yr)	Total candidates Observed	S (counts)	τ (10^{24} yr)
$^{76}\text{Ge}(ppp) \rightarrow ^{73}\text{Cu} + X$	N.A.	N.A.	0.445	0.969	0.350	343.5	51.84	0	2.44	>21.2
$^{74}\text{Ge}(ppp) \rightarrow ^{71}\text{Cu} + X$	N.A.	N.A.	0.114	0.969	0.050	109.0	0.60	0	2.44	>0.2

Background: Semi-Inclusive Visible Mode

- **Main Background Sources:**
 - Muon-induced saturated events not tagged by the veto system.
 - Random time coincidences with unrelated events.
- **Random Coincidence Rate:**
 - Event rate (>100 keV) $\approx 10^{-4}$ Hz in the MJD.
 - Expected random events after saturation: ≈ 0.6 (6342×10^{-4}).
 - Must occur in the **same detector** as the saturated event ($0.6/35 \approx 0.017$ **counts** across ~ 35 detectors).
- **Muon Veto System:**
 - High efficiency with near- 4π coverage.
- **6 out of 492 saturated events** not tagged; 2 likely due to electrical issues (electrical breakdown), 3 lack of the corresponding daughter events.
- **One non-muon-veto saturated event** meets all analysis criteria.
- If more such events match the **β -decay half-life** of daughter isotopes, it would **strengthen rare decay signal evidence**.

Comparison with GERDA Experiment

- Set a **partial lifetime limit** of $\sim 1.2 \times 10^{26}$ **years** for **fully inclusive tri-nucleon decays** of ${}^{76}\text{Ge}$. Used an exposure of **61.89 kg·yr**.
- All tri-nucleon decays will end with ${}^{73\text{m}}\text{Ge}$ decay.
- Developed an algorithm to detect **two-step waveforms** from ${}^{73\text{m}}\text{Ge}$ decay.
- **No events** observed matching ${}^{73\text{m}}\text{Ge}$ decay signature.
- **MJD observed several events** consistent with ${}^{73\text{m}}\text{Ge}$ decay detected, likely stem from **cosmogenic ${}^{73}\text{As}$ decay**. Phys. Rev. C **105**, 014617 (2022)

Summary

- Using a full dataset with a total exposure of **MAJORANA DEMONSTRATOR**, the experiment set the one of the **most stringent limits to date** for rare multinucleon decay processes.
- New partial lifetime limits were established, including a record
 - 1.836×10^{26} yr for the ${}^{76}\text{Ge}(\text{ppp}) \rightarrow {}^{73}\text{Cu} \text{ e}^+ \pi^+ \pi^+$ decay mode,
 - 1.827×10^{26} yr for the ${}^{76}\text{Ge}(\text{ppn}) \rightarrow {}^{73}\text{Zn} \text{ e}^+ \pi^+$ decay mode.
- These new limits significantly advance the search for physics beyond the Standard Model and highlight the potential of the HPGe detector technology for future experiments such as LEGEND-1000.

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain:
Clara Cuesta

Duke University, Durham, NC, and TUNL:
Matthew Busch, Eric Martin

Indiana University, Bloomington, IN:
Nafis Fuad, Walter Pettus, Anna Reine, Sam Schleich

Joint Institute for Nuclear Research, Dubna, Russia:
Sergey Vasilyev

Lawrence Berkeley National Laboratory, Berkeley, CA:
Yuen-Dat Chan, Alan Poon

Los Alamos National Laboratory, Los Alamos, NM:
Pinghan Chu, Steven Elliott, In Wook Kim, Ralph Massarczyk, Samuel J. Meijer, Keith Rielage, Danielle Schaper, Sam Watkins, Brian Zhu

National Research Center 'Kurchatov Institute' Institute of Theoretical and Experimental Physics, Moscow, Russia:
Alexander Barabash

North Carolina State University, Raleigh, NC and TUNL:
Matthew P. Green, Ethan Blalock, Rushabh Gala

Oak Ridge National Laboratory, Oak Ridge, TN:
Ian Guinn, Vincente Guiseppe, David Radford, Chang-Hong Yu

Osaka University, Osaka, Japan:
Hiroyasu Ejiri

Pacific Northwest National Laboratory, Richland, WA:
Isaac Arnquist, Maria-Laura di Vacri, Eric Hoppe, Richard T. Kouzes

South Dakota Mines, Rapid City, SD:
Ryan Cantz, Cabot-Ann Christofferson, Alissa Love, Ana Carolina Sousa Ribeiro

University of California, San Diego, CA:
Aobo Li

University of North Carolina, Chapel Hill, NC, and TUNL:
Brady Bos, Jason Chapman, Julieta Gruszko, Reyco Henning, John F. Wilkerson

University of South Carolina, Columbia, SC:
Frank Avignone, David Tedeschi

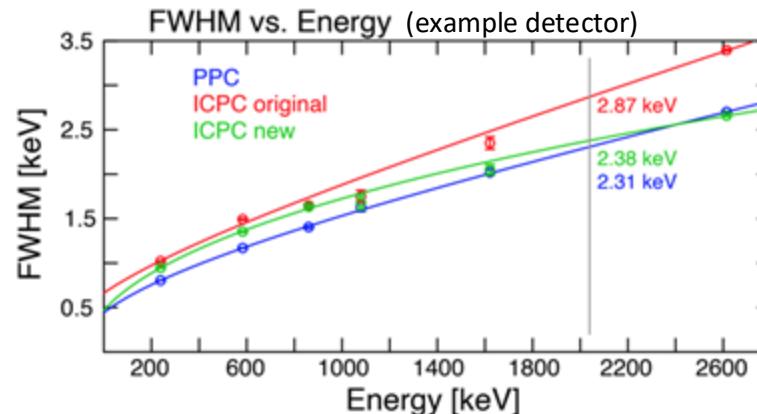
University of South Dakota, Vermillion, SD:
Laxman Paudel

University of Tennessee, Knoxville, TN:
Yuri Efremenko

University of Washington, Seattle, WA:
Jason Detwiler, Clint Wiseman

Williams College, Williamstown, MA:
Graham K. Giovanetti

*students



backup

Inverted Coaxial Point Contact Detectors

- Inverted coaxial point contact (ICPC) detectors are larger (>3 kg) than PPC detectors (up to 1.2 kg). MAJORANA operated 4 ICPCs from Aug. 2020 to Mar 2021

- Beneficial for background reduction in LEGEND
- Larger range of drift times requires more refined analysis techniques
- MAJORANA has demonstrated comparable performance with ICPCs and PPCs. Best energy resolution for ICPCs to date!

New charge trapping correction improves combined energy resolution of ICPC detectors