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Introduction

» Understanding baryon number violation is fundamental for explaining the
stability of matter and possible new physics beyond the Standard Model.

* MAJORANA DEMONSTRATOR:
An ultra-low-background experiment designed to search for neutrinoless
double-beta decay (0vS ) and rare multi-nucleon decay modes in high-purity
germanium ("°Ge) detectors, located deep underground at the Sanford
Underground Research Facility (SURF).

» Present results from the full dataset: the most stringent limits to date for rare
multi-nucleon decay processes in germanium isotopes, probing lifetimes up to
102%6years.
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Matter-Antimatter Asymmetry

Baryon asymmetry of Universe

- Baryon/photon ~6x10-'° (Cosmic Microwave
Background Radiation; Nobel Prize 2006)
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Matter-Antimatter Asymmetry
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Baryon asymmetry of Universe o= T
— Baryon/photon ~6x10-1° (Cosmic Microwave » .
Background Radiation; Nobel Prize 2006)
Sakharov (Nobel Peace Prize 1975) conditions
— Departure from thermal equilibrium Ror wame S e
, o : Depart¥ire from thermal€quilibrium
— Charge-parity(CP) violation i S
— Baryon number nonconservation
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The Universe cooled now. CP Violation
CP violation only observed in kaon (Nobel Prize @L, Q..
1980)and B meson decays v orosaces /@
— Kobayashi-Maskawa mechanism in Standard o1 500 _ o

Model (CKM Matrix) (Nobel Prize 2008) @ 7 @~
— Baryon/photon~10-18 Decavnmm:_'s:m sfr - o
No evidence for baryon number violation! g
- 0Bvv (MJD, PRL130.062501) | Ve, Vua V| [ d
— Tri-nucleon Decay (MJD, PRC112. L022501) CKM Matrix [Z:] ) h: ; E:] [z‘
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Origins and Early Theory of Baryon Decays

* The concept emerged in the context of grand unified theories (GUTs).
— Predict proton decays

« The current limit is t/B(p —e*10) >2.4x1034 yr (Super-Kamiokande, PRD
102.112011 (2020))

%@ Los Alamos

AAAAAAAAAAAAAAAAAA



Experimental Efforts

* Proton and Nucleon Decay Searches (underground experiments)
— Kamiokande / Super-Kamiokande, Soudan, SNO, etc
- po €+7T0,p _)M-I_T[O;p - 17K+,p N e+K0,p N ﬂ+K0
» Collider-Based Baryon Decay Studies
- LHC, Belle, etc
- t > ITjj(where l=eory), 7" » An~
* Neutron—Antineutron Oscillation
— European Spallation Source, SNO, Super-Kamiokande
- n—on
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Multi-nucleon Decays

« Extension of Higgs sector or GUT-inspired models allow AB = 2
— Best limit is > 4.04x1032 yr (Super-K)

 The Zs model is the Standard Model extended by an additional discrete
symmetry (Z,xZ5), i.e., the centers of SU(2) and SU(3).
— Include the right-handed neutrinos to cancel anomalies.
- K. S. Babu, I. Gogoladze, and K. Wang, Gauged baryon parity and nucleon stability,

Phys. Lett. B 570, 32 (2003).

» This forbids all operators with AB = 1 or AB = 2, such as single proton decay
or neutron—antineutron oscillations. Only AB = 3(such as triple nucleon decay)
is permitted, but only via extremely high-dimension (dimension 15) operators.
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Three-nucleon Decays in MAJORANA DEMONSTRATOR
« Semi-inclusive visible modes

- ppp — e
Deposit

+o+ o+

ntnt,ppn > etnt,pnn - e’
large energy in the detectors

daughter isotope decay

Fully inclusive modes

O nnn - vrr

Cannot distinguish positrons or pions in MJD
The excited daughter can emit gammas (multiple detectors)
Search for emission of enormous energy and the following

- 75Ge(ppp) — 73Cu + X,7°Ge(ppn) —» 3Zn + X,
- 76Ge(pnn) - 3Ga + X, 7°Ge(nnn) —» 73Ge + X

— X can deposit energy in detectors (visible) or escape from
detectors (invisible)

— Search for the daughter isotope decays and the grand-
daughter isotope decays

daughter isotopes). Calculate partial lifetime.
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Semi-inclusive Visible Modes

L

Event Selection 1

ppp — eTntat,ppn - etnt, pnn -

etn® nnn - vr®

Visible particles (e.g., positrons, pions)
deposit large amounts of energy in
germanium detectors (three-nucleon
mass = 3 GeV).

Event selection (Step 1): identify high-
energy deposits (>10 MeV) —
saturated events not tagged as muons
(Ge detector energy threshold ~10-11
MeV).

Los Alamos
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Semi-inclusive Visible Modes -
: Event Selection 1

ITIlIIlIllITI

» Selection efficiency: ~99%. o R
Calculated using GEANT4 " 10000
simulations. E
- Simulate energy release from 3- R
nucleon decays Er °Cu (MeV)
— Track daughter particles (isotopes, K10
positrons, pions, etc.) 0.25
— Propagate particles within A 0.2
germanium detectors ] .
— Calculate fraction of events 3
depositing >10 MeV (&) W 1000 0.1
0.05

probability per decay per MeV (%)
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Semi-inclusive Visible Modes -

: Event Selection 2 N
« Daughter isotopes are unstable. = 3p
» After the first saturated event, select events 42 2pn
within 5 x half-life where energy > 100 keV. 2CU - / ,
- The 5xT,,, window corresponds roughly to a 5o %- 6600 : 4
coverage (e;,). Must account for run gaps due to
calibrations, detector downtime, or power outages. 2 MeV .
— Example: for *Cu, T/, = 4.2 s — search window = 4.2 x s ' -
5=21s. :
- Calculate the energy efficiency from 100 keV up to Q- s
value for each decay channel. (¢, ) 2000
* This approach is possible because the first
events are very rare (thanks to the highly
efficient muon tagging), and the MJD

background is extremely low. O oo oo oo o0
1 Energy(keV)

=
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Fully Inclusive Modes: Event Selection *Ge

76Ge(ppp) — 3Cu + X,7°Ge(ppn) - 3Zn + X, e 2
76Ge(pnn) - 73Ga + X, 7°Ge(nnn) - 3Ge + X 42s 2pn
: : " scu ¢
X can deposit energy in detectors (visible) or escape from - /
detectors (invisible) 9, 6600 \ . 2hp
) ) ‘ng" ‘95'2 B- 585
We don’t consider X but the decays of the daughter isotopes T;,—'?: 2355 3n
and the following grand-daughter isotopes. e
For example, 73Cu can decay to 73Zn and 73Zn can decay to i
73Ga' 73Zn
Select the first event of energy > 2 MeV. There are more low 4ooo§_
energy backgrounds. (¢, ) aso0 -
After the 5xT,,, window of the grand-daughter isotope (¢, ), 3°°°§‘
search for the second event of energy > 2MeV. (¢;,) EOF
Calculate the energy efficiency from 2 MeV up to Q-value for 1s00F
each decay channel. Exclude the multi-site events because of 1000
the multi-site cuts. 500

O?h...l,...,..,l........1....................
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
S Energy(keV
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Experimental Efforts for Three-nucleon Decays

Isoto | Channels
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Location e

nnnnn

« Earth shielding blocks cosmic rays

« Sanford Underground Research Facility =~ . e 20
(SURF): Located in Lead, SD, at a depth - =T e
of 1480 m LT\ ’

» Equivalent to ~4300 m water overburden
(m.w.e.)

» Muon flux reduced from ~1072 /cm?/s
(surface) to ~5x107° /cm?/s
(underground)

 Site of the historic Homestake
experiment — Ray Davis’s pioneering
solar neutrino detection (Nobel Prize
2002)

’5 Los Alamos 10/30/2025
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Low Background

* Active veto: muon detection
panels

+ Passive shielding:
polyethylene, underground
lead, commercial + electroform
copper layers

 Radon suppression: |
continuous nitrogen purge ‘

Inner Cu
Shield -_- = : -

Ll

| —
Lo NN
o

Outer Cu
Shield
|‘
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Big Detector Arrays

« Sensitive to events of strange patterns

10/30/2025 19



Electroform copper Low mass JFET

Detectors Passivated surface. Pointfontact (p+)
« Enriched Germanium ("6Ge) detector ~
88% 76Ge enrichment

» Excellent resolution: peak width/energy ~
0.1%

 Low threshold ~ 1 keV

« High-purity semiconductor: Ge bandgap ~
0.8 eV

Bias voltage

lithium-diffused surface (n+)
"5!-1 10/30/2025 20



Energy Reconstruction

« Calibrated on weekly 228Th calibration data,
retuned on full data set

« Energy estimated via optimized trapezoidal
filter of ADC-nonlinearity-corrected traces with
charge-trapping correction

« Energy resolution (2.5 keV FWHM @ 2039
keV) and linearity (< 0.2 keV up to 3 MeV) a
record for neutrinoless double-beta decay
searches

-

228Th Energy Calibration Spectrum and Resolution

Energy (ke'V')

1000 1500 2000 2500 3

c.l'h".'.'kg.' day

| 2

« Charge trapping correction improves

resolution at 2039 keV from 4 keV to 2.5 keV
FWHM

Resollution (ke'V)

Residual (ke'V)
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Background Rejection

Point-contact HPGe detectors are
essential for background rejection.

Pulse-shape analysis (PSD):

— AvsE: multiple-site event rejection —
compares maximum waveform slope to
energy, primarily rejects external y
events.

— DCR (Delayed Charge Recovery):
identifies slow charge collection from
surface a contamination (mainly from
radon decay chain).

- LQ (Late Charge): flags partial charge
collection in the transition layer, often
from 3 or y interactions.

AAAAAAAAAAAAAAAAAA
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Multi-Site Events Cut (AvsE)

» Amplitude of current pulse is suppressed for a
multi-site event compared to a single-site event
of the same event Energy (AvsE)

* Tuned on ?28Th calibration data to accept 90% of
single-site DEP events. Rejects >50% of the
Compton continuum near Qg

Single-site event  Multi-site event

Y
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Data Claaning, Muon, & Muliplicty Cuts |§
Passivated Surface Events (D(}?R)uE A 5
* Alpha particles incident on % 1
the passivated surfaces &

have a degraded energy
reconstruction and can fall

near Qgg. I e %00
Energy [ke'V]

« Charge trapped at passivated surface is

slowly rereleased (~10s of ps): Delayed Q2000 -
Charge Recovery (DCR) = | o
» Cut using slope of tail after rising edge 1500l B \ E
* Tuned to keep 99% of bulk events : % F
- Suspect a contamination near passivated 1000] e
surface 219Po from 222Rn exposure - - ‘
S001— | b Vet
J
0 & . "

MR s PRI T N S T S T N T T T TR S N T T
{0 50000 10000 1504040 20000 25000
"Q Los Alamos t [ns]
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Surface Cuts:

g <+ 99.9% AE acceptance 25 g
Point-Contact Events (AvsE) s [ 5
« Alphas incident on the point '
contacts release less delayed 10
charge and evade the DCR :
cut. , iy KR
» But they have steeper rising E i =
edges, so the higher current Joint A/E-DCR spectrum from TUBE scanner, with an a-source scanning
amplitude events can be across the passivated surface of a PPC detector
removed using the AvsE cut. B 3 3
-§35(K) - 5‘

= 3000F

tuoe {

Ampl

2500F

Ampl

2000

Tent

Cur
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9600 GR00 10000 10200 10400 10600 10300 11000
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Surface Cuts:

Transition Dead-Layer Events (LQ)

Events in lithiated n-plus surfaces
experience severe energy degradation
and slow (~1-2 us) rerelease of charge.
Events with a partial charge deposit in this
transition layer are potential backgrounds!

Cut waveforms with a slow component
using “Late Charge” (LQ): area above
rising edge of waveform after 80% of
charge is collected

Tune to keep >99% of single-site bulk
events using 2°8Tl double escape events

—~
1% Los Alamos
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Run Configuration and Timeline

el e

16.8 kg (20) erGe

2015 2016 2017 2018 2019 2020

Mar. 2021:
Stopped €""Ge Operation

12.9kg (15) *"Ge 14.1kg (13) "Ge
8.8kg (14) ™Ge 8.8 kg (14) "Ge
ML, WL L, ., WL,
[ ey [ =]
Module 2 mg% Eg
= g =] [
ey & L
. . 6.7 kg (4) as ICPC
Deploy Module 2 in shield S PP Ty R Operation of Module 2.
able/Lonnector Upgrade ot viodule ) with natural Ge detectors.
Mirion/Canberra  Ortec Ortec ICPC Removed 5 PPC detectors for LEGEND Testing Now with 180mTa
BEGe PPC enrGe Installed 4 LEGEND ICPC Detectors
natGe eane m
~0.6 kg E

1.3-2.1k
"Q Los Alamos & 10/30/2025 27
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Exposure

PPC (87.4% "6Ge,
12.6% Ge): 61.64 kg

yr

ICPC (88% "°Ge, 70
12%74Ge): 2.82 kg yr 2
BEGe (20.5% "°Ge, &0
27.4% "2Ge, 7.8%
3Ge, 36.5% "*Ge, 7.8 **
%Ge): 27.4 kg yr =
= 40
Account for run gaps £
due to calibrations, % a0
detector downtime, or w
power outages. a0
Add Inner Ca
Start with Module

%@ Los Alamos
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Search Candidates for Semi-inclusive pe
4.2 6.6

Visible e
3Zn 245 4.1
 The longest T4/, is 1268.4 s so 5xT 4, is 6342 s. 747 95.6 23
. On?I potential event for semi-inclusive visible 7Ga  487.2 5.4
mode
: ICu 19.4 4.6
- Energy of first event > 11558 keV
— Energy of second event: 147 keV iZn 147 2.8
- '1|'|7rr11§ gifference between first and second events: 0Cy 445 6.6
- Satisfy OGa 12684 1.7
" °Ge(pn) — “Ga+m’ +m* 65Cu 171 2.7

= 3Ge(pnn) — °Ga + e* + m°
= 2Ge(pn) —» °Ga+ mw’ + mrt 67Ge 1134 4.2
= 70Ge(nnn) — 7Ge + V + 1r°

%@ Los Alamos
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- -
Search Candidates for Fully Inclusive pe
4.2 6.6

73Cu

* One potential event for fully inclusive mode 770 24.5 41
— Energy of first event: 2294 keV

4Zn  95.6 2.3
- Energy of second event: 2614 keV
- Time difference between first and second events: MGa 4872 5.4
165_7 S ICy  19.4 4.6
— Satisfy no channels
iZn 147 2.8
OCu  44.5 6.6

0Ga 1268.4 1.7
89Cu 171 2.7

6Ge 1134 4.2

%@ Los Alamos
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The Partial Lifetime Limit

The partial lifetime limit is calculated as
NT€tot
- > —

S
— NTis exposure, € is the efficiency and S is the signal upper limit .m

; i : 5 :
corresponding to Feldman-Cousins 90% confidence level. 6164 2.82kg 27.383

In this study, we considered all detectors including enriched kgyr  yr kg yr
and natural detectors; need to calculate PPC, ICPC, BEGe epci 99.1% 99.9%  99.9%

separately (And each has its own efficiency study).
_ _ _ €pspi 86.1% 81.0%  86.1%
The data cleaning cuts discard nonphysical waveforms, :

pileup waveforms, pulser events.

The Pulse-shape analysis (PSD) cuts, including AvsE,
DCR, and LQ, discard background events.
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Final Results for Semi-inclusive Visible Mode

e NTe — For semi-inclusive visible mode, we only consider the data
PPTCQItCPC BEGe cleaning cuts to the daughter isotope decay (>100 keV
& NTiepc,i)€o€r, €E, events).

> i NTe; NTery Total candidates S T
Decay Mode €0 € €E, €z, €E, (10** atom yr) (10** atom yr) Observed (counts) (10%* yr)
Semi-inclusive Visible
Ge(ppp) — PCuetmtnt 0998 0969 0996 N.A. N.A. 465.1 448.0 0 2.44 >183.6
Ge(ppn) — "Znetnt 0999 0.969 0990 N.A. N.A. 465.1 445.8 0 2.44 =182.7
Ge(pp) - "Znmta*t 0.994 0968 0972 N.A. N.A. 465.1 435.0 0 244  >1783
°Ge(pn) — MGan’x* 0979 0.964 0991 N.A. N.A. 465.1 435.0 1 4.36 =99.8
"Ge(ppp) — "Cuetntnt 0998 0969 0993 N.A. NA. 147.2 141.3 0 2.44 =57.9
"“Ge(ppn) - ""Znetn ™t 0999 0.967 0982 N.A. N.A. 147.2 139.6 0 2.44 =57.2
BGe(ppp) — Cuetntnt 0998 0968 0996 N.A. N.A. 17.6 16.9 0 2.44 =06.9
”Ge(prm) — PGaetn® 0999 0.958 0.867 N.A. N.A. 17.6 14.6 1 4.36 =33
BGe(pp) - "Znatrt 0994 0.967 0982 N.A. N.A. 17.6 16.6 0 2.44 =0.8
2Ge(ppp) — PCuetntnt 0998 0967 0973 N.A. N.A. 62.1 58.4 0 2.44 =23.9
2Ge(pn) - Gan’n* 0979 0.958 0.867 N.A. N.A. 62.1 50.5 1 436 =11.6
Ge(nnn) — "Gevr® 0952 0959 0972 N.A. N.A. 46.5 41.3 1 4.36 =9.5

@y LUS AIUINTIVUS
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Final Results for Fully Inclusive Mode

__ ,PPC,ICPC,BEGe 2
* NTeror = (2 NTiEPSD,i)EEle‘CZEEZ

For fully inclusive mode, we consider all pulse-
shape analysis for the daughter isotopes and
the grand-daughter isotopes decays.

> i NTie; NTery Total candidates S T
Decay Mode €0 €, €E, €xy eg, (10* atomyr) (10** atom yr) Observed (counts) (10* yr)
76Ge(ppp) — BCu+X N.A. N.A. 0445 0.969 0.350 343.5 51.84 0 2.44 =>21.2
MGe(ppp) — "Cu+X N.A. NA. 0.114 0969 0.050 109.0 0.60 0 2.44 >0.2

_
1% Los Alamos



Background: Semi-Inclusive Visible Mode

L

Main Background Sources:
— Muon-induced saturated events not tagged by the veto system.
— Random time coincidences with unrelated events.

Random Coincidence Rate:
- Eventrate (>100 keV) = 107 Hz in the MJD.
— Expected random events after saturation: = 0.6 (6342 x 107%).

— Must occur in the same detector as the saturated event (0.6/35) = 0.017 counts across ~35
detectors.

Muon Veto System:
- High efficiency with near-41T coverage.

6 out of 492 saturated events not tagged; 2 likely due to electrical issues (electrical
breakdown), 3 lack of the corresponding daughter events.

One non-muon-veto saturated event meets all analysis criteria.

If more such events match the B-decay half-life of daughter isotopes, it would
strengthen rare decay signal evidence.

Los Alamos
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Comparison with GERDA Experiment ~__—° %3‘58 \

Set a partial lifetime limit of ~1.2 x 102°
years for fully inclusive tri-nucleon decays
of ®Ge. Used an exposure of 61.89 kg-yr.

All tri-nucleon decays will end with 73mGe
decay.

Developed an algorithm to detect two-step
waveforms from °mGe decay.

No events observed matching ?mGe decay
signature.

MJD observed several events consistent
with ?mGe decay detected, likely stem from
cosmogenic ?As decay. Phys. Rev. C 105,
01461 7 (2022)
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Summary

» Using a full dataset with a total exposure of MAJORANA DEMONSTRATOR, the
experiment set the one of the most stringent limits to date for rare
multinucleon decay processes.

» New partial lifetime limits were established, including a record
- 1.836%1026 yr for the "Ge(ppp)—"3Cu e*m*m* decay mode,
- 1.827%1026 yr for the "6Ge(ppn)—73Zn e*1r* decay mode.

« These new limits significantly advance the search for physics beyond the
Standard Model and highlight the potential of the HPGe detector technology for
future experiments such as LEGEND-1000.
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Inverted Coaxial Point Contact Detectors

Inverted coaxial point contact (ICPC) detectors are larger (>3 kg) than PPC

detectors (up to 1.2 kg). MAJORANA operated 4 ICPCs from Aug. 2020 to Mar 2021
—-Beneficial for background reduction in LEGEND

—-Larger range of drift times requires more refined analysis techniques

—MAJORANA has demonstrated comparable performance with ICPCs

and PPCs. Best energy resolution for ICPCs to date!

140,
Jangol T Caliteation Feak a 2614 ke¥
Ok Erergy Coreection
1M FWHM = 3.3 ke
- Impensed Energy Cormction

B0 FWHM = 16 keV
ﬁ[![l_—
(NN
2000 —

-F L | — a1 1

._}:IHJ 2605 2610 2615 2620 2625

Energy (ke'V)

%@ Los Alamos

NATIONAL LABORATORY

FWHM [keV]

IFW!-IM.US. IEn?rgyl (e>famf)le (L:letelctorl) .
PPC o f -
:Eﬁ(‘ Ir::?!nal f .-..a.ax kﬂ"'l’_ﬂ____q—r-r':

1 1 1 | ] | 1 1 1 | ] | 1

200 600 1000 1400 1800 2200 2600

Energy [keV]

New charge trapping correction improves combined energy resolution of ICPC detectors
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