

Fakultät Mathematik und Naturwissenschaften, Institut für Kern- und Teilchenphysik

Neutrino nuclear interactions and forbidden beta decay for double

beta decay

H. Ejiri, J. Suhonen, K. Zuber, Phys. Rep. 797,1 (2019)

Kai Zuber, TU Dresden

Introduction

- The 2019 Physics Report is considered to be the Guideline book
- consider this talk is informal
 - So here are some updates (where I am involved in) Dominated by collaboration with Joel Kostensalo and Jouni Suhonen (from now on KSZ)
- Final GERDA results on DBD of Ge-76
- Hence updates/new work are presented (Cd-113)
- ✤ A few solar neutrino issues
- Detection of the CNO neutrinos
- Summary

GERDA -experiment

- Double beta decay at LNGS based on Ge-76 HPGe-detectors
- Aim is an exposure of 100 kg yrs (127.2 kg yrs)

No evidence for a peak Half-life limit

 $T_{1/2}$ > 1.8 x10²⁶ years (90 CL)

22.10.2020

Kai Zuber

GERDA

Doube beta decay at LNGS based on Ge-76 HPGe-detectors

Quenching of g_A

- Free g_A value is 1.27 (PDG)
- In nuclei this might be different (effective g_A)
- \clubsuit Highly forbidden beta decay are very sensitive on g_A
- Double beta decay half-live depends on g_A^4

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}g_A^4 \mid M^{0\nu} \mid^2 \left(\frac{\langle m_{ee} \rangle}{m_e}\right)^2$$

Free value: $g_A = 1.27$

F. Deppisch, J. Suhonen, PRC 94, 055501 (2016)

6

Spectral shapes of highly forbidden beta decays are very sensitive on $\ensuremath{\mathsf{g}}_{\ensuremath{\mathsf{A}}}$

J. Suhonen, Phys. Rev. C, 96:055501 (2017)

COBRA-Experiment: 64 CdZnTe room temperature semiconductors

K. Zuber, Phys. Lett. B 519,1 (2001)

Here: Cd-113 (half-live about 10¹⁵ yrs): $\frac{1}{2} \xrightarrow{9^+}{2}$ transition

COBRA performed special run fo row energy

After selection 44 detectors are used

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}g_A^4 \mid M^{0\nu} \mid^2 \left(\frac{\langle m_{ee} \rangle}{m_e}\right)^2$$

 $\overline{g}_{A}(ISM) = 0.915 \pm 0.007,$ $\overline{g}_{A}(MQPM) = 0.911 \pm 0.013,$ $\overline{g}_{A}(IBFM-2) = 0.955 \pm 0.022.$

Bodenstein-Dresler et al., PLB 800,135092 (2020)

8

Solar neutrinos

All branches observed except hep, still a lot to do

Hep neutrinos

concept

und Kultur

6

5

4

3

2

1

0

E (MeV)

²⁰⁵ Pb

3/2+

shell model

7/2

5/2-

×29/2-

21/2-25/2

19/2+ 17/2+

- 13/2+

5/2-

experiment

Solar neutrinos

6

5

4

3

2

1

0

E (MeV)

TECHNISCHE UNIVERSITÄT DRESDEN

Radiochemical issues

25/2+

shell model

+ 11/2-

7/2+

experiment

5/2+

TI-205 -> Pb-205 hase the lowest threshold of all radiochemical approaches (50 keV)

New cross section calculation for TI-205 (asuming $g_A=1.0$)

Expected about 68 SNU, much less than before (KSZ, PRC 101,031302 (2020)) Big difference to Bahcall, Ulrich (1988), which has 263 SNU!

DARWIN - 50 tons LXe dark matter detector at LNGS

- Sensitivity for Xe-136 double beta decay

F. Agostini et al., Eur. Phys. J. C,80,808 (2020)

- Solar neutrions detection by electron recoil

F. Aalbers et al., arXiv:2006.03114

-Solar pp neutrino detection by Xe-131

KSZ, arXiv:2009.01164

Added another 81 SNU

DRESDEN concept Exzellenz aus Wissenschaft und Kultur

Also 3 new japanese groups joint DARWiN Kai Zuber

DARWIN - 50 tons LXe dark matter detector at LNGS

Shell model

und Kultur

15

DARWIN - 50 tons LXe dark matter detector at LNGS

First detection of CNO-neutrinos by Borexino Solar fusion by pp-chain reactions and CNO cycle

All pp-chain neutrinos have been observed except hep

CNO neutrinos never detected in the 80 years of prediction

Borexino @LNGS Underground

- Liquid scintillator detector (about 300t)
- -Detection by neutrino electron scattering
- -Running since many years
- Constantly improving [the experiment
- C14 level is 6-7 orders of magnitude lower than normal

A typical period of data taking

A Bi-210 beta spectral shape might show a slight difference from neutrino-electron scattering events of CNO neutrinos like in Borexino (LSc in general)

Borexino, Z. Bagdasarian et al. 2020 (TAUP 17)

Borexino phase-II

Solar ν	B16(GS98)-HZ cpd/100 ton	B16(AGSS09)-LZ cpd/100 ton	Borexino Results cpd/100 ton
pp	131.1 ± 1.4	132.2 ± 1.4	$134\pm10^{+6}_{-10}$
$^{7}\mathrm{Be}$	47.9 ± 2.8	43.7 ± 2.5	$48.3 \pm 1.1^{+0.4}_{-0.7}$
pep	2.74 ± 0.04	2.78 ± 0.04	$2.43\pm0.36^{+0.15}_{-0.22}(\mathrm{HZ})$
			$2.65\pm0.36^{+0.15}_{-0.24}~{\rm (LZ)}$
CNO	4.92 ± 0.78	3.52 ± 0.52	< 8.1 (95% C.L.)

21

und Kultur

Two BG issues: Bi-210 and convection

