DBD NMEs by interacting shell model

岩田順敬（関西大学）
 Yoritaka Iwata（Kansai University）

Ref．）Y．Iwata，N．Shimizu et al．Phys．Rev．Lett． 2016
J．Terasaki，Y．Iwata，Phys．Rev．C 2019
S．Sarkar，Y．Iwata，P．K．Raina，Phys．Rev．C 2020

Contents

* Shell model research [overview]
* Shell model calculation for DBD of Ca48
- Large scale calculation by Tokyo group -
\times Right handed weak boson?
* Summary

Recent trend on ISM calculations: (1)"more structure" = new paths

Nuclear Structure Aspects of Neutrinoless Double- $\boldsymbol{\beta}$ Decay
B. A. Brown, ${ }^{1}$ M. Horo, ${ }^{2}$ and R. A. Sen'kov ${ }^{2,3}$
${ }^{1}$ Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory,
Michigan State University, East Lansing, Michigan 48824-1321, USA
${ }^{2}$ Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA
${ }^{3}$ Department of Natural Sciences, LaGuardia Community College, The City University of New York, Long Island City, New York 11101, USA

Recent trend on ISM calculations: (2)Hadronic current by EFT

Shell model study of using an effective field theory for disentangling several contributions to neutrinoless double- $\boldsymbol{\beta}$ decay

Mihai Horoi ${ }^{*}$ and Andrei Neacsu ${ }^{\dagger}$
Department of Physics, Central Michigan University, Mount Pleasant, Michigan 48859, USA
[λ mechanism] see also ... Simkovic et al., Front Phys. 2017

$$
\begin{aligned}
{\left[T_{1 / 2}^{0 v}\right]^{-1}=} & G_{01} g_{A}^{4} \mid \eta_{0 v} M_{0 v}+\left(\eta_{N_{R}}^{L}+\eta_{N_{R}}^{R}\right) M_{0 N} \\
& +\eta_{\tilde{q}} M_{\tilde{q}}+\eta_{\lambda^{\prime}} M_{\lambda^{\prime}}+\eta_{\lambda} X_{\lambda}+\left.\eta_{\eta} X_{\eta}\right|^{2} .
\end{aligned}
$$

the left-right symmetric model with R-parity-violating SUSY model

\rightarrow for contributions of
 $v_{L}, v_{R}, \quad W_{L}, W_{R}$

(a)

(c)

Ordinary case

Yao et al., Phys. Rev. Lett., 2020

Recent trend on ISM+ calculations: (3)Ab-initio (IMSRG usable for ISM)

PHYSICAL REVIEW LETTERS 124, 232501 (2020)

Ab Initio Treatment of Collective Correlations and the Neutrinoless Double Beta Decay of ${ }^{48} \mathrm{Ca}$

J. M. Yao $\odot,^{1,{ }^{*}}$ B. Bally, ${ }^{2, \dagger}$ J. Engel $\odot{ }^{2,{ }^{2, *}}$ R. Wirth $\odot,{ }^{1,8}$ T. R. Rodríguez $\odot,{ }^{3, \|}$ and H. Hergert $\odot^{1,4,4}$
${ }^{1}$ Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824-1321, USA
${ }^{2}$ Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina 27516-3255, USA
${ }^{3}$ Departamento de Física Teórica y Centro de Investigación Avanzada en Física Fundamental,
Universidad Autónoma de Madrid, E-28049 Madrid, Spain
${ }^{4}$ Department of Physics \& Astronomy, Michigan State University, East Lansing, Michigan 48824-1321, USA

Large scale ISM calculations Including 2 major shells (Tokyo)

10
Neutron Single-Particle Energies
A. Brown, lecture note
${ }^{48} \mathrm{Ca}$ (G.S.)

1) Adjustment of interaction for "double beta decays"

EXPERIMENT] F. Videbaek et al., NPA (1986) 2nd 0^{+}state of ${ }^{48} \mathrm{Ca}$ was pointed out to be proton-excitation state proton excitation included in $2 \mathrm{nd} 0^{+}$state of ${ }^{48} \mathrm{Ca}$:

GXPF1B: 0.00
SDPFMU: 0.22

${ }^{48} \mathrm{Ca}$ (G.S.)

" 0.22 " is still too small to be pronounced as the proton-excitation state cf.) the parity difference between the $s d$ - and $p f$ - orbits.

Our idea is to adjust the gap between the $s d$ - and $p f$ - shells to reproduce the experimental excitation energy of $2 \mathrm{nd} 0^{+}$state of ${ }^{48} \mathrm{Ca}$

2) Shell gap

EXPERIMENT] F. Videbaek et al., NPA (1986) 2nd O^{+}state of ${ }^{48} \mathrm{Ca}$ was pointed out to be proton-excitation state

By reducing the shell gap of Ca40 about $2 \mathrm{MeV} \rightarrow 5.8 \mathrm{MeV}$
Slightly modified interaction SDPFMU-dlo made from SDPFMU

Energy spectra, as a test of the nuclear structure calculation

As an evidence of good description, the energy spectra made by SDPFMU-db is compared to the experiment; SDPFMU-db is an effective interaction made for 2 major shell description.

2hw component ratio
SDPFMU-db
Ca48 (g.s.) , Ti48 (g.s.): 22\%, 33\%

Two neutrino process

[Experiment]: Yako et al. PRL (2009)

Contribution from IVSM (isovector spin monopole) should be included in experiment. However, it is not quantitatively well known.

$$
\begin{aligned}
M^{2 \nu} & =\sum_{m} \frac{\left\langle 0_{\mathrm{g.s.}}^{f}\left\|O_{\mathrm{GT}^{-}}\right\| 1_{m}^{+}\right\rangle\left\langle 1_{m}^{+}\left\|O_{\mathrm{GT}^{-}}\right\| 0_{\mathrm{g.S.}}^{i}\right\rangle}{E_{m}-E_{0}+Q_{\beta \beta} / 2} \\
\overline{M_{+}^{2 v}} & \equiv \sum_{m} \frac{\sqrt{B\left(\mathrm{GT}^{-} ; m\right)} \sqrt{B\left(\mathrm{GT}^{+} ; m\right)}}{E_{m}-E_{0}+Q_{\beta \beta} / 2}
\end{aligned}
$$

Inversely calculated from $\mathrm{T}_{1 / 2}$

$$
\left[T_{1 / 2}^{2 \nu}\right]^{-1}=F^{2 \nu}\left|M^{2 \nu}\right|^{2}
$$

SDPFMU-db calc.:

[Quenching factor]
q is determined using precise measurement Up to Ex $=5 \mathrm{MeV}$: Grewe et al. PRC(2007) $q=0.725$
$M^{2 v}(<5 \mathrm{MeV})=0.083$.
The final value of $M^{2 v}$ is ...
$\mathrm{M}^{2 v}=0.0545 \mathrm{MeV}^{-1}$
$F^{2 v}=1.044 \times 10^{-17} \mathrm{yr}^{-1} \mathrm{MeV}^{6}$
Suhonen-Civitarese Phys. Rep (1998)
$T_{1 / 2}=3.225 \times 10^{19} \mathrm{yr}$
(100 levels of 1^{+}states)

NME value in large model space

$$
\left[T_{1 / 2}^{0 \nu}\left(0_{i}^{+} \rightarrow 0_{f}^{+}\right)\right]^{-1}=G^{0 \nu}\left|M^{0 \nu}\right|^{2}:\left(\frac{\left\langle m_{\nu}\right\rangle}{m_{e}}\right)^{2}
$$

Inclusion rate of 2 nd major shell components:

$$
{ }^{48} \mathrm{Ca}(22 \%),{ }^{48} \mathcal{T} i(33 \%) \quad s d+p f
$$

$$
{ }^{48} \mathrm{Ca}(\sim 2 \%),{ }^{48} \mathcal{T} i(\sim 2 \%) \quad p f+s d g
$$

This result shows that It should be necessary to take into account sd shell

$M^{0 v}(1$ shell $)$	0.833		
$M^{0 v}(2$ shells $)$	1.118		34.2%
:---			
increased			

Due to $(1 / 1.34)^{2} \sim 0.56$, it means that the half-life is almost halved
for the same neutrino mass.

Summary of NME for $0 \gamma \beta \beta$ of ${ }^{48} \mathrm{Ca}$

Comparison of neutrinoless double beta decay NME (with ranges)

Present status for DBD candidates

A. Feassler, J. Phys.: Conf. Ser. 337, 012065 (2012)

J. Engel and J. Menéndez, Rep. Prog. Phys. 80 (2017) 046301

There has been no significant difference for these 5 years.
~ 2 to 3 times difference still exists

Reliability criterion by experiments

Based on
$2 v$ experiment

Reliability of NME values by different models

Double beta decay (DBD)

FIG. 1. (Color online) The Feynman diagrams for $0 \nu \beta \beta$ via (a) $W_{L}-W_{L}$ mediation ($m_{\beta \beta}$ mechanism) and (b) $W_{L}-W_{R}$ mediation (λ mechanism) with light neutrinos exchange.
Λ mechanism

\section*{Neutrinoless DBD of ${ }^{48} \mathrm{Ca}$
 Stefanik 2015] \triangle| G_{09} | 10^{-9} |
| :--- | :--- |
| G_{08} | 10^{-11} |
 \[

48

\]
 \[

{ }^{48} \mathrm{Ca} \rightarrow{ }^{48} \mathrm{Ti}+e^{-}+e^{-}

\]
 Half life (inverse)
 | $\left[T_{1 / 2}^{0 \nu}\right]^{-1}=\eta_{\nu}^{2} C_{m m}+\eta_{\lambda}^{2} C_{\lambda \lambda}+\eta_{\nu} \eta_{\lambda} \cos \psi C_{m \lambda}$
 usual WL-WL exchange |
| :---: |
| | |

 - targe $\sim \neq 10=$ smatl $-1 \neq 10====\sim \neq$ ${ }^{\text {accurate }}{ }_{(\mathrm{i}=1,2,3, \ldots, 11)}^{G_{0 i} \text { : phase space factor }}$ ($\mathrm{i}=1,2,3, \ldots, 11$)
 [Simkovic 2017] For Ca,
 \[
$$
\begin{aligned}
& \eta_{\nu}=2.23 \times 10^{-5} \\
& \eta_{\lambda}=2.24 \times 10^{-5}
\end{aligned}
$$

\]
 \[

\eta_{\nu}=\frac{m_{\beta \beta}}{m_{e}}, \quad \eta_{\lambda}=\lambda\left|\sum_{j=1}^{3} m_{j} U_{e j} T_{e j}^{*}\right|,

\]
 \[

\psi=\arg \left[\left(\sum_{j=1}^{3} m_{j} U_{e j}^{2}\right)\left(\sum_{j=1}^{3} U_{e j} T_{e j}^{*}\right)\right]

\]
 Pontecorvo-Maki-Nakagawa-Sakata matrix
 \[

g_{A}=1.27
\]}

Calculation of

nuclear matrix element

$$
\begin{array}{c:c}
M_{\alpha}^{0 \nu}=\langle f| \tau_{-1} \tau_{-2} \mathcal{O}_{12}^{\alpha}|i\rangle \\
\mathcal{O}_{12}^{G T, \omega G T, q G T}=\tau_{1-}-\tau_{2-}\left(\sigma_{1}, \sigma_{2}\right) H_{G T, \omega G T, q G T}\left(r, E_{k}\right), & M_{\nu}=M_{G T}-\frac{M_{F}}{g_{A}^{2}}+M_{T}, \\
\mathcal{O}_{12}^{F, \omega F, q F}=\tau_{1-} \tau_{2-} H_{F, \omega F, q F}\left(r, E_{k}\right), & M_{\nu \omega}=-M_{\omega G T}-\frac{M_{\omega F}}{g_{A}^{2}}+M_{\omega T}, \\
\mathcal{O}_{12}^{T, \omega T, q T}=\tau_{1-} \tau_{2-} S_{12} H_{T, \omega T, q T}\left(r, E_{k}\right), & M_{1} \\
S_{12}=3\left(\sigma_{1} \cdot \hat{\mathbf{r}}\right)\left(\sigma_{2} \cdot \hat{\mathbf{r}}\right)-\left(\sigma_{1}, \sigma_{2}\right), \mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2} & M_{1+}=M_{q G T}+3 \frac{M_{q F}}{g_{A}^{2}}-6 M_{q T}, \\
H_{\alpha}\left(r, E_{k}\right)=\frac{2 R}{\pi} \int_{0}^{\infty} \frac{M_{\alpha}(q, r) q d q}{q+E_{k}-\left(E_{i}+E_{f}\right) / 2} & \begin{array}{ll}
\text { Included: } \\
\text { finite nucleon size (FNS) } \\
\text { higher-order currents (HOC) }
\end{array}
\end{array}
$$

Four methods

- Closure

Closure:

- Running Closure

$$
H_{\alpha}(r)=\frac{2 R}{\pi} \int_{0}^{\infty} \frac{f_{\alpha}(q, r) q d q}{q+\langle E\rangle,}
$$

Non-closure:

- Running non-closure

$$
H_{\alpha}\left(r, E_{k}\right)=\frac{2 R}{\pi} \int_{0}^{\infty} \frac{f_{\alpha}(q, r) q d q}{q+E_{k}-\left(E_{i}+E_{f}\right) / 2}
$$

- Mixed

Running closure

$$
\bar{M}_{\alpha}^{0 \nu}\left(E_{c}\right)=M_{\alpha}^{0 \nu}\left(E_{c}\right)-\mathcal{M}_{\alpha}^{0 \nu}\left(E_{c}\right)+\underset{\text { Closure }}{\mathcal{M}_{\alpha}^{0 \nu}}
$$

Matrix elements［L－L type］

SRC＝Short range correlation（短距離相関）

TABLE I．Nuclear matrix elem nts $M_{F}, M_{G} T, M_{T}, M_{\nu}$ for $0 \nu \beta \beta$ of ${ }^{48} \mathrm{Ca}$ ，calculated with GXPF1A interaction in closure， running closure，running nong osure and mixed methods for different SRC parametrization．$\langle E\rangle=7.72 \mathrm{MeV}$ was used for closure and running closure ethods．

NME	SRC	Closure	Running closure	Running nonclosure	Mixed
M_{F}	None	－0．207	－0．206	－0．210	－0．211
M_{F}	Miller－Spencer	－0．141	－0．141	－0．143	－0．143
M_{F}	CD－Bonn	－0．222	－0．221	－0．226	－0．227
M_{F}	AV18	－0．204	－0．203	－0．207	－0．208
$M_{G T}$	None	0.711	0.709	0.779	0.781
$M_{G T}$	Miller－Spencer	0.492	0.490	0.553	0.555
$M_{G T}$	CD－Bonn	0.738	0.736	0.810	0.812
$M_{G T}$	AV18	0.675	0.673	0.745	0.747
M_{T}	None	－0．074	－0．072	－0．074	－0．076
M_{T}	Miller－Spencer	－0．076	－0．073	－0．075	－0．078
M_{T}	CD－Bonn	－0．076	－0．074	－0．076	－0．078
M_{T}	AV18	－0．077	－0．074	－0．076	－0．079
M_{ν}	None	0.765	0.765	0.836	0.836
M_{ν}	Miller－Spencer	0.504	0.505	0.566	0.565
M_{ν}	CD－Bonn	0.799	0.799	0.874	0.874
M_{ν}	AV18	0.725	0.725	0.798	0.798

Total

Matrix elements [ω type]

TABLE II. Nuclear matrix elements $M_{\omega F}, M_{\omega G T}, M_{\omega T}, M_{\nu \omega}$ for $0 \nu \beta \beta$ of ${ }^{48} \mathrm{Ca}$ calculated with GXPF1A interaction in closure, running closure, running nonclosure and mixed methods for different SRC parametrization. $\langle E\rangle=7.72 \mathrm{MeV}$ was used for closure and running closure methods.

NME	SRC	Closure	Running closure	Running nonclosure	Mixed
$M_{\omega F}$	None	-0.199	-0.198	-0.206	-0.207
$M_{\omega F}$	Miller-Spencer	-0.137	-0.136	-0.141	-0.142
$M_{\omega F}$	CD-Bonn	-0.212	-0.211	-0.220	-0.221
$M_{\omega F}$	AV18	-0.195	-0.194	-0.202	-0.203
$M_{\omega G T}$	None	0.66	0.659	0.766	0.767
$M_{\omega G T}$	Miller-Spencer	0.454	0.452	0.546	0.548
$M_{\omega G T}$	CD-Bonn	0.683	0.682	0.794	0.795
$M_{\omega G T}$	AV18	0.623	0.622	0.731	0.732
$M_{\omega T}$	None	-0.072	-0.069	-0.073	-0.076
$M_{\omega T}$	Miller-Spencer	-0.073	-0.070	-0.074	-0.077
$M_{\omega T}$	CD-Bonn	-0.074	-0.071	-0.075	-0.078
$M_{\omega T}$	AV18	-0.074	-0.071	-0.075	-0.078
$M_{\nu \omega}$	None	0.712	0.712	0.821	0.821
$M_{\nu \omega}$	Miller-Spencer	0.466	0.467	0.559	0.558
$M_{\nu \omega}$	CD-Bonn	0.740	0.741	0.856	0.855
$M_{\nu \omega}$	AV18	0.670	0.671	0.781	0.780

Total
The amplitude of matrix element for L-R exchange are comparable to the cases with L-L exchange.

Matrix elements [q type]

TABLE III. Nuclear matrix elements $M_{q F}, M_{q G T}, M_{q T}, M_{1+}$, and M_{2-} for $0 \nu \beta \beta$ of ${ }^{48} \mathrm{Ca}$ calculated with GXPF1A interaction in closure, running closure, running nonclosure and mixed methods for different SRC parametrization. $\langle E\rangle=7.72 \mathrm{MeV}$ was used for closure and running closure methods.

NME	SRC	Closure	Running closure	Running nonclosure	Mixed
$M_{q F}$	None	-0.102	-0.102	-0.101	-0.101
$M_{q F}$	Miller-Spencer	-0.082	-0.082	-0.080	-0.080
$M_{q F}$	CD-Bonn	-0.123	-0.122	-0.121	-0.122
$M_{q F}$	AV18	-0.118	-0.118	-0.117	-0.117
$M_{q G T}$	None	3.243	3.246	3.317	3.314
$M_{q G T}$	Miller-Spencer	2.681	2.684	2.751	2.748
$M_{q G T}$	CD-Bonn	3.554	3.557	3.709	3.706
$M_{q G T}$	AV18	3.423	3.426	3.502	3.499
$M_{q T}$	None	-0.147	-0.140	-0.143	-0.150
$M_{q T}$	Miller-Spencer	-0.150	-0.143	-0.146	-0.153
$M_{q T}$	CD-Bonn	-0.149	-0.142	-0.145	-0.153
$M_{q T}$	AV18	-0.150	-0.142	-0.146	-0.153
M_{1+}	None	3.937	3.898	3.989	4.028
M_{1+}	Miller-Spencer	3.430	3.389	3.480	3.521
M_{1+}	CD-Bonn	4.221	4.183	4.356	4.394
M_{1+}	AV18	4.101	4.061	4.158	4.198
M_{2-}	None	0.275	0.279	0.378	0.374
M_{2-}	Miller-Spencer	0.085	0.090	0.172	0.167
M_{2-}	CD-Bonn	0.271	0.276	0.372	0.367
M_{2-}	AV18	0.214	0.220	0.319	0.313

Total
The amplitude of matrix element for L-R exchange are relatively large compared to the cases with L-L exchange.

Spin parity decomposition - intermediate state -

FIG. 2. (Color online) Contribution through different spin-parity of virtual intermediate states of ${ }^{48} \mathrm{Sc}\left(J_{k}^{\pi}\right)$ in NMEs for $m_{\beta \beta}$ and λ mechanisms of $0 \nu \beta \beta$ of ${ }^{48} \mathrm{Ca}$. Here, comparison are shown for NMEs, calculated in running closure and running nonclosure methods with GXPF1A effective interaction for AV18 SRC parametrization. $\langle E\rangle=7.72 \mathrm{MeV}$ was used for running closure method.

Spin parity decomposition - initial and final states -

FIG. 3. (Color online) Contribution through different coupled spin-parity of two initial neutrons or two final created protons $\left(J^{\pi}\right)$ in NMEs for $m_{\beta \beta}$ and λ mechanisms of $0 \nu \beta \beta$ of ${ }^{48} \mathrm{Ca}$. Here, comparison are shown for NMEs, calculated in running closure and running nonclosure methods with GXPF1A effective interaction for AV18 SRC parametrization. $\langle E\rangle=7.72 \mathrm{MeV}$ was used for running closure method.

Cutoff dependence

- energy -

G.S. contribution is large

FIG. 4. (Color online) Variation of (a) Fermi (b) Gamow-Teller (c) tensor and (d) total NMEs for $0 \nu \beta \beta$ ($m_{\beta \beta}$ and λ mechanisms) of ${ }^{48} \mathrm{Ca}$ with cutoff excitation energy $\left(E_{c}\right)$ of states of virtual intermediate nucleus ${ }^{48} \mathrm{Sc}$. NMEs are calculated with total GXPF1A interaction for AV18 SRC parametrization in running closure and running nonclosure methods. For running closure method, closure energy $\langle E\rangle=7.72 \mathrm{MeV}$ was used.

Cutoff dependence

- number of states -

FIG. 5. (Color online) Variation of (a) Fermi (b) Gamow-Teller (c) tensor and (d) total NMEs for $0 \nu \beta \beta$ ($m_{\beta \beta}$ and λ mechanisms) of ${ }^{48} \mathrm{Ca}$ with cutoff number of states $\left(N_{c}\right)$ of virtual intermediate nucleus ${ }^{48} \mathrm{Sc}$. NMEs are calculated with total GXPF1A interaction for AV18 SRC parametrization in running closure and running nonclosure methods. For running closure method, closure energy $\langle E\rangle=7.72 \mathrm{MeV}$ was used.

Closure-energy dependence

[constant] no significant change is noticed in several settings

In closure approximation

FIG. 6. (Color online) Dependence of the total NMEs for $0 \nu \beta \beta$ (λ and $m_{\beta \beta}$ mechanisms) of ${ }^{48} \mathrm{Ca}$ with closure energy $\langle E\rangle$, calculated with total GXPF1A interaction for AV18 SRC parmaetrization in running closure and mixed methods.

Conclusion

NME	SRC	Closure	Running closure	Running nonclosure	Mixed
				1	
				I	
M_{ν}	None	0.765	0.765	0.836	0.836
M_{ν}	Miller-Spencer	0.504	0.505	0.566 (${ }^{\text {I }}$	0.565
M_{ν}	CD-Bonn	0.799	0.799	0.874 X 1	0.874
M_{ν}	AV18	0.725	0.725	0.798	0.798
				-	
				1	
M_{1+}	None	3.937	3.898	3.989 !	4.028
M_{1+}	Miller-Spencer	3.430	3.389	$3.480 \times$	3.521
M_{1+}	CD-Bonn	4.221	4.183	4.356 X 5	4.394
M_{1+}	AV18	4.101	4.061	4.158	4.198
				I	
M_{2-}	None	0.275	0.279	0.378 -	0.374
M_{2-}	Miller-Spencer	0.085	0.090	$0.172 \times 1 /{ }^{\text {¹ }}$	0.167
M_{2-}	CD-Bonn	0.271	0.276	$0.372 \times 1 / 2$	0.367
M_{2-}	AV18	0.214	0.220	0.319	0.313

$$
\begin{aligned}
& C_{m m}=g_{A}^{4} M_{\nu}^{2} G_{01}^{n}, \\
& \text { " }{ }^{1} \text { (} s t d \text {) } \\
& C_{m \lambda}=-g_{A}^{4} M_{\nu}\left(M_{2-} G_{03}-M_{1+} G_{04}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { large~*10 small~1/10 ~*1 }
\end{aligned}
$$

Effect should not be negligible.
$C_{\lambda \lambda} 1^{\text {st }}$: enlarged amplitude (*5)
$C_{\lambda \lambda} 2^{\text {nd }}:$ comparable amplitude (*1/2)
$C_{\lambda \lambda} 3^{\text {rd }}$: enlarged amplitude (*2.5)

Point of discovery:

 we have found the large WR-WL effect$$
\begin{align*}
f_{G T}(q, r)= & \frac{j_{0}(q r)}{g_{A}^{2}}\left(g_{A}^{2}\left(q^{2}\right)-\frac{g_{A}\left(q^{2}\right) g_{P}\left(q^{2}\right)}{m_{N}} \frac{q^{2}}{3}\right. \\
& \left.+\frac{g_{P}^{2}\left(q^{2}\right)}{4 m_{N}^{2}} \frac{q^{4}}{3}+\left(2 \frac{g_{M}^{2}\left(q^{2}\right)}{4 m_{N}^{2}} \frac{q^{2}}{3}\right)\right), \tag{15}\\
f_{F}(q, r)= & g_{V}^{2}\left(q^{2}\right) j_{0}(q r), \tag{16}\\
f_{T}(q, r)= & \frac{j_{2}(q r)}{g_{A}^{2}}\left(\frac{g_{A}\left(q^{2}\right) g_{P}\left(q^{2}\right)}{m_{N}} \frac{q^{2}}{3}-\frac{g_{P}^{2}\left(q^{2}\right)}{4 m_{N}^{2}} \frac{q^{4}}{3}\right. \\
& \left.+\frac{g_{M}^{2}\left(q^{2}\right)}{4 m_{N}^{2}} \frac{q^{2}}{3}\right), \tag{17}\\
f_{\omega G T}(q, r)= & \frac{q}{\left(q+E_{k}-\left(E_{i}+E_{f}\right) / 2\right)} f_{G T}(q, r), \tag{18}\\
f_{\omega F}(q, r)= & \frac{q}{\left(q+E_{k}-\left(E_{i}+E_{f}\right) / 2\right)} f_{F}(q, r), \tag{19}\\
f_{\omega T}(q, r)= & \frac{q}{\left(q+E_{k}-\left(E_{i}+E_{f}\right) / 2\right)} f_{T}(q, r), \tag{20}\\
f_{q G T}(q, r)= & \left(\frac{g_{A}^{2}\left(q^{2}\right)}{g_{A}^{2}} q+3 \frac{g_{P}^{2}\left(q^{2}\right)}{g_{A}^{2}} \frac{q^{5}}{4 m_{N}^{2}}\right. \tag{21}\\
\mathrm{S}_{f_{q F}(q, r)=} & +\frac{\left.+\frac{g_{A}\left(q^{2}\right) g_{P}\left(q^{2}\right)}{g_{A}^{2}\left(q^{2}\right) j_{1}(q r) q,} \frac{q^{3}}{m_{N}}\right) r j_{1}(q, r),}{} \tag{22}
\end{align*}
$$

almost 2 times larger than WL-WL

$$
\begin{aligned}
& g_{V}\left(q^{2}\right)=\frac{g_{V}}{\left(1+\frac{q^{2}}{M_{V}^{2}}\right)^{2}}, \\
& g_{A}\left(q^{2}\right)=\frac{g_{A}}{\left(1+\frac{q^{2}}{M_{A}^{2}}\right)^{2}}, \\
& g_{M}\left(q^{2}\right)=\left(\mu_{p}-\mu_{n}\right) g_{V}\left(q^{2}\right), \\
& g_{P}\left(q^{2}\right)=\frac{2 m_{p} g_{A}\left(q^{2}\right)}{\left(q^{2}+m_{\pi}^{2}\right)}\left(1-\frac{m_{\pi}^{2}}{M_{A}^{2}}\right)
\end{aligned}
$$

Previous shell model calculation did not calculate/find the importance of $2^{\text {nd }}$ and $3^{\text {rdd }}$ terms

Not calculated in
Horoi, Neascu, PRC 2018

Refs. for studying on this direction

λ-mechanism

D. Stefánik, R. Dvornickỳ, F. Simkovic, and P. Vogel, Reexamining the light neutrino exchange mechanism of the $0 \nu \beta \beta$ decay with left-and right-handed leptonic and hadronic currents, Physical Review C 92, 055502 (2015).
λ-mechanism (mainly by RPA calculations)
F. Šimkovic, D. Štefánik, and R. Dvornickỳ, The λ mech-
anism of the $0 \nu \beta \beta$-decay, Frontiers in Physics 5, 57
(2017).

Review article (e.g. hadronic current):
J. Engel and J. Menéndez, Status and future of nuclear matrix elements for neutrinoless double-beta decay: a review, Reports on Progress in Physics 80, 046301 (2017).

Summary

* ISM research [overview]
+ nuclear structure, + hadronic current, +ab-initio
\rightarrow right-handed neutrino, right-handed W-boson
* Shell model calculation for DBD of Ca48
- Large scale calculation by Tokyo group -
* Right handed weak bosons ?
* (Right handed neutrino) --- sterile neutrinos ?

