

NUMEN project @ LNS: Status and perspectives

F. Cappuzzello Università di Catania and INFN LNS

on behalf of C. Agodi

Spokespersons: F. Cappuzzello (cappuzzello@Ins.infn.it) and C. Agodi (agodi@Ins.infn.it)

Proponents: E. Aciksoz, L. Acosta, C. Agodi, X. Aslanouglou, N. Auerbach, J. Bellone, R. Bijker, D. Bonanno, D. Bongiovanni, T. Borello, S. Boudhaim, M.L. Bouhssa, I. Boztosun, V. Branchina, M.P. Bussa, L. Busso, L. Calabretta, A. Calanna, F. Cappuzzello, D. Carbone, M. Cavallaro, D. Calvo, E.R. Chávez Lomelí, M. Colonna, G. D'Agostino, N. Deshmuk, P.N. de Faria, C. Ferraresi, J.L. Ferreira, A. Ferrero, A. Foti, P. Finocchiaro, V. Greco, A. Hacisalihoglu, Z. Housni, A. Khouaja, F. Iazzi, J. Inchaou, R. Introzzi, G. Lanzalone, A. Lavagno, F. La Via, J.A. Lay, H. Lenske, R. Linares, J. Lubian, A. Lavagno, D. Lo Presti, N. Medina, D. R. Mendes, A. Muoio, J. R. B. Oliveira, A. Pakou, L. Pandola, F. Pinna, D. Rifuggiato, M.R.D. Rodrigues, G. Russo, G. Santagati, E. Santopinto, L. Scaltrito, O. Sgouros, S.O. Solakcı, V. Soukeras, S. Tudisco, R.I.M. Vsevolodovna, V. Zagatto

Institutions

- 1. Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Catania, Italy
- 2. Istituto Nazionale di Fisica Nucleare, Sezione di Catania,
- 3. Istituto Nazionale di Fisica Nucleare, Sezione di Torino
- 4. Istituto Nazionale di Fisica Nucleare, Sezione di Genova
- 5. Dipartimento di Fisica e Astronomia, Università di Catania, Italy
- 6. Politecnico di Torino, Italy
- 7. Università degli Studi di Enna "Kore", Enna, Italy
- 8. Universidade de Sao Paulo, Brazil
- 9. Universidade Federal Fluminense, Niteroi, Brazil
- 10. University of Ioannina, Ioannina, Greece
- 11. Universidad Nacional Autónoma de México
- 12. CNR-IMM, Sezione di Catania, Italy
- 13. University of Giessen, Germany
- 14. Akdeniz University, Antalya, Turkey
- 15. Université Hassan II Casablanca, Morocco
- 16. School of Physics and Astronomy Tel Aviv University, Israel

$$1/T_{\frac{1}{2}}^{0\nu}\left(0^{+} \rightarrow 0^{+}\right) = G_{0}\left[M^{\beta\beta\,0\nu}\right]^{2}\left|\frac{\langle m_{\nu}\rangle}{m_{e}}\right|^{2}$$

Heavy-ion DCE

- ✓ Induced by strong interaction
- ✓ Sequential nucleon transfer mechanism 4th order:

Brink's Kinematical matching conditions D.M.Brink, et al., Phys. Lett. B 40 (1972) 37

The LNS laboratory in Catania

The Superconducting Cyclotron (CS) at LNS

INFN-LNS: nuclear physics and accelerators

page design by PF

F. Cappuzzello et al., Eur. Phys. J. A (2016) 52: 167

Optical characteristics	Measured values
Maximum magnetic rigidity	1.8 T m
Solid angle	50 msr
Momentum acceptance	-14.3%, +10.3%
Momentum dispersion for k= - 0.104 (cm/%)	3.68

Achieved resolution

Energy $\Delta E/E \sim 1/1000$

Angle $\Delta\theta\sim 0.2^\circ$

Mass Δ m/m ~ 1/160

⁴⁰Ca(¹⁸O,¹⁸Ne)⁴⁰Ar @ 270 MeV

$$\left| M^{0\nu\beta\beta} \left({}^{40}Ca \right) \right|^2 = 0.37 \pm 0.18$$

First experimentally driven NME

Pauli blocking about 0.14 for F and GT

Moving towards hot-cases:

Caveat

- The $({}^{18}O, {}^{18}Ne)$ reaction is particularly advantageous, but it is of ${\cal B}^+{\cal B}^+$ kind;
- None of the reactions of 8⁻8⁻ kind looks like as favourable as the (¹⁸O,¹⁸Ne). (¹⁸Ne,¹⁸O) requires a radioactive beam (²⁰Ne,²⁰O) or (¹²C,¹²Be) have smaller B(GT)
- The reaction Q-values are normally more negative than in the ⁴⁰Ca case
- In some cases gas or implanted target will be necessary, e.g. ¹³⁶Xe or ¹³⁰Xe
- In some cases the energy resolution is not enough to separate the g.s. from the excited states in the final nucleus \rightarrow Coincident detection of γ -rays

Much higher beam current is needed

Present technology is not enough...

The challange: to detect with good energy, mass and angular resolutions rare events from at very high rates of heavy ions!

Upgraded set-up to work with two orders of magnitude more beam current than the present

Substantial change in the technologies used in CS and in the MAGNEX detector

Major upgrade of LNS facilities: The CS accelerator

• The **CS** accelerator current (from 100 W to 5-10 kW);

A challenging beam dump inside the MAGNEX hall

A challenging beam dump inside the MAGNEX hall

(6,25 E+13 pps)

From S.Russo (LNS radioprotection service)

Major upgrade of LNS facilities: the MAGNEX spectrometer

• The **MAGNEX focal plane** detector rate (from few kHz to several MHz)

A big challenge!

0.9 M€ call approved by INFN CSN5 (SICILIA)

P.I. S.Tudisco, collaboration with CNR, STM, FBK

SiC detectors: state of art

The Schottky diodes are fabricated by epitaxy onto high-purity 4H–SiC n-type substrate.

0.5x0.5 mm²

First prototypes ready for the end of this year

2x2 mm

Front-end and read-out electronics

ELECTRONICS PROTOTYPES (D. LoPresti)

1) ASIC front–end chip:

for FPD chip VMM2(3) in collaboration with Brookhaven National Laboratory (8x10⁴ transistor/channe for 64 channels)

2) Read – out: new generation of FPGA and System On Module (SOM)

3) Demanding radiation hardness required

Number of channels

- Gas tracker ~ 2000 ch
- SiC-SiC ~ 7500 ch
- \succ γ -ray calorimeter ~ 2500 ch

Tot ~ 12000 ch

Other upgrades

- The MAGNEX maximum magnetic rigidity (from 1.8 Tm to 2.2 Tm)
- An array of detectors for γ-rays measurement in coincidence with MAGNEX (in collaboration with IFUSP and IFUFF (J. de Oliveira))
- The target technology for intense heavy-ion beams (developed by Poli Torino and INFN (D.Calvo))
- Nuclear reaction theory (formal development and calculations) coordinated by INFN CSN-IV (M. Colonna) in collaboration with H. Lenske.
- Data Acquisition (L. Pandola)
- Data Reduction (D. Carbone)

The Phases of NUMEN project

- Phase1: The experimental feasibility
- Phase2: "hot" cases optimizing the experimental conditions, getting first results and complete the tender for the new accelerator and detector (approved)
- > Phase3: The facility Upgrade (Cyclotron, MAGNEX, beam lines,):
- Phase4 : The systematic experimental campaign

year	2013	2014	2015	2016	2017	2018	2019	2020	2021
Phase1	done								
Phase2				A	oprov	ed			
Phase3									
Phase4									

Time table

Results from a test run on ¹¹⁶Sn(¹⁸O,¹⁸Ne)¹¹⁶Cd October 2015

Valuable job from our young collaborators

- E_{beam} =15MeV/u, target thickness 400 µg/cm²
- 150μ C integrated charge in 50 hours at 1 enA (including dead time 50%) \checkmark
- Detector and beam transport performances studied up to 6 enA \checkmark
- Realistic cross section estimate for DCE \checkmark

Facing some hot cases in Phase 2

		2016				2017				2018			
Reaction	Energy (MeV/u)	Ι	II	III	IV	Ι	II	III	IV	Ι	II	III	IV
¹¹⁶ Sn (¹⁸ O, ¹⁸ Ne) ¹¹⁶ Cd	15-30	Performed experiment at 15 MeV/u											
¹¹⁶ Cd (²⁰ Ne, ²⁰ O) ¹¹⁶ Sn	15-25	Pei	forn	ned (test								
¹³⁰ Te (²⁰ Ne, ²⁰ O) ¹³⁰ Xe	15-25												
⁷⁶ Ge (²⁰ Ne, ²⁰ O) ⁷⁶ Se	15-25												
⁷⁶ Se (¹⁸ O, ¹⁸ Ne) ⁷⁶ Ge	15-30												
¹⁰⁶ Cd(¹⁸ O, ¹⁸ Ne) ¹⁰⁶ Pd	15-30												

Conclusions and Outlooks

- NUMEN represents a challenging perspective for the future of LNS in nuclear science
- The project turns around the MAGNEX and the Cyclotron upgrade toward high intensity
- It is playing an important role for attracting worldwide researchers at the LNS, (more than 50 in 2015)
- It is playing a key role for nuclear physics in Italy. INFN-LNS was recently included in the restricted list of italian strategical reserach projects
- > **Results** of relevance for $0\nu\beta\beta$ physics are expected **soon**

(¹⁸O,¹⁸Ne) DCE reactions at LNS

$$^{40}Ca(^{18}O,^{18}Ne)^{40}Ar @ 270 MeV$$

 $0^{\circ} < \vartheta_{lab} < 10^{\circ} Q = -5.9 MeV$

First pilot experiment

- > ¹⁸O and ¹⁸Ne belong to the same multiplet in S and T
- Very low polarizability of core ¹⁶O
- > Sequential transfer processes very mismatched $Q_{opt} \sim 50$ MeV
- Doubly magic target

Experimental Set-up

- > $^{18}O^{7+}$ beam from Cyclotron at 270 MeV (10 pnA, 3300 μ C in 10 days)
- ⁴⁰Ca solid target 300 µg/cm²
- Ejectiles detected by the MAGNEX spectrometer
- Unique angular setting: -2° < θ_{lab}< 10° corresponding to a momentum transfer range from 0.17 fm⁻¹ to about 2.2 fm⁻¹

Particle Identification

The role of the transfer reactions

Connection between β -decay and Single Charge Exchange

Y. Fujita Prog. Part. Nuc. Phys. 66 (2011) 549 **H. Ejiri** Phys. Rep. 338 (2000) 256

F. Osterfeld Rev. Mod. Phys. 64 (1992) 491 T.N. Taddeucci Nucl. Phys. A 469 (1997) 125

(³He,t): In general for B(GT)>0.05

For heavier projectiles

Analysis of the ¹¹B(⁷Li, ⁷Be)¹¹Be reaction at 57 MeV in a microscopic approach

F. Cappuzzello^{a,*}, H. Lenske^b, A. Cunsolo^{a,c}, D. Beaumel^d, S. Fortier^d, A. Foti^{c,e}, A. Lazzaro^{a,c}, C. Nociforo^a, S.E.A. Orrigo^{a,c}, J.S. Winfield^a

See also

F.Cappuzzello et al. *Phys.Lett B* 516 (2001) 21-26 F.Cappuzzello et al. EuroPhys.Lett 65 (2004) 766-772 S.E.A.Orrigo, et al. *Phys.Lett. B* 633 (2006) 469-473 C.Nociforo et al. *Eur.Phys.J. A* 27 (2006) 283-288 M.Cavallaro Nuovo Cimento C 34 (2011) 1

- ✓ Confirmed by us on different nuclei: ¹¹Be, ¹²B, ¹⁵C, ¹⁹O
- Microscopic and unified theory of reaction and structure is mandatory for quantitative analyses
- ✓ Best results for transitions among isospin multiplets in the projectiles as (⁷Li_{gs(3/2-)}, ⁷Be_{gs(3/2-)})
- ✓ (¹⁸O_{gs(0+)}, ¹⁸F_{gs(1+)}) should be better than (⁷Li, ⁷Be) even if not really explored to now

S. Nakayama PRC 60 (1999) 047303

Epi Th= 100 μm N=5-8e13 /cm³

Rivelatore ΔE

Rivelatore E

About the reaction mechanism

Factorization of the charge exchange cross-section

٠.

$$\frac{d\sigma}{d\Omega_{DCE}}(q,\omega) = \hat{\sigma}_{\alpha}^{DCE}(E_p,A)F_{\alpha}^{DCE}(q,\omega)B_T^{DCE}(\alpha)B_P^{DCE}(\alpha)$$

$$\hat{\sigma}_{\alpha}^{DCE}(E_p,A) = K(E_p,0)|J'_{ST}|^2 N_{ST}^D$$

The unit cross section

Single charge-exchange

 $\hat{\sigma}(E_p, A) = K(E_p, 0) |J_{ST}|^2 N_{ST}^D$

 J_{ST} Volume integral of the V_{ST} potential

Double charge-exchange

 $\hat{\sigma}_{\alpha}^{DCE}(E_p, A) = K(E_p, 0) \left| J'_{ST} \right|^2 N_{ST}^D$

 J'_{ST} Volume integral of the $V_{ST}GV_{ST}$ potential, where $G = \sum_{n} \frac{|n\rangle\langle n|}{E_n - (E_{i+}E_f)/2}$ is the intermediate channel propagator (including off-shell)

$$\widehat{\sigma}^{DCE}_{lpha}ig(E_p,Aig)$$
 is the Holy Graal

If known it would allow to determine the NME from DCE cross section measurement, whatever is the strenght fragmentation

The volume integrals

Nuclear spin and isospin excitations

Franz Osterfeld

Reviews of Modern Physics, Vol. 64, No. 2, April 1992

- Volume integrals are larger at smaller energies
- ✓ They enter to the fourth power in the unit cross section!
- GT-like % F-like competion at low energy

FIG. 15. Energy and momentum dependence of the free nucleon-nucleon t_F matrix. The upper part of the figure shows the energy dependence of the central components of the effective t_F matrix at zero-momentum transfer (including direct and exchange terms). The G-matrix interaction of Bertsch *et al.* (1977) was used below 100 MeV and joined smoothly to the t_F matrix above 100 MeV. The lower figures show the momentum dependence of the 135-MeV t_F matrix for natural-(left figure) and unnatural-(right figure) parity transitions. Isoscalar and isovector central (C), spin-orbit (LS), and tensor (T) components are shown. From Petrovich and Love (1981).

Neutrino-less double β-decay

35

The NUMEN goals

Compare sensitivity

Sensitivity of different half-life experiments

NUMEN Holy Graal Studying if the σ^{DCE} is a smooth function of E_p and A

2