

CAGRA at Grand Raiden

Compton Array Gamma-ray spectrometer at RCNP/RIBF for Advanced studies

NNR16 Workshop RCNP September 30, 2016 M.P. Carpenter

Outline of Talk:

- Short history of the CAGRA collaboration
- The components of CAGRA
- RCNP campaigns
 - En Course campaign
 - Grand Raiden campaign
- Summary

CAGRA project

- Create a pool of Compton Suppressed Ge Clover detectors from laboratories in Japan and the U.S. + China which can be assembled at RCNP/RIBF to be utilized in gamma-ray spectroscopy.
- ✤ Physics experiments at RCNP using EN, GR, MuSIC
- ✦ At RIBF using both energy degraded and stopped beams of exotic nuclei.
- Mechanical Infrastructures to be built
 - Self contained, trigger-less acquisition system using Gretina Digitizers
 - C3 Liquid Nitrogen filling system
 - 3 Support structure
- Original Physics Scope
 - **G3** Multi-Step Coulomb excitation
 - C3 Transfer or Deep Inelastic reactions
 - **C3** Fusion Evaporation
 - Stopped Beams

DOE Funding

FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT

U.S. Department of Energy

Office of Science Office of Nuclear Physics

Research Opportunities at Rare Isotope Beam Facilities

Funding Opportunity Number: DE-PS02-08ER08-10

Project funded through FOA at ~\$720,000

CAGRA: DOE Funded items

- Mechanical Infrastructure (Deliverables)
 - Self contained, trigger-less acquisition system using Gretina Digitizers
 - Liquid Nitrogen fill system
 - Support structure
 - High Voltage supply system (ISEG)
- Shipping costs between USA and Japan
- Travel and per diem for USA researchers to setup and operate device in Japan

CAGRA: Brief History

- Dec. 2008, workshop at ANL to discuss physics opportunities at RIBF using Clover Array.
- Dec. 2008, proposal submitted to DOE to fund infrastructure of Array.
- O Apr. 2010, notified that proposal is accepted and will receive funding.
- Nov. 2010, DOE funding begins.
- Dec. 2012, workshop to discuss physics opportunities at RCNP and RIBF held at RCNP - recommendation was to explore siting CAGRA at RCNP first.
- December 2013, workshop to discuss physics opportunities at RCNP & RIBF with CAGRA with the emphasis on RCNP
 - EN beam line in flight RIB production capability
 - Grand Raiden beam line to couple CAGRA with the large spectrometer.
- April 2014 proposal submitted to RCNP P-PAC and received recommendation to run a campaign of CAGRA experiments in 2015 and 2016.
- Mar May 2015, campaign of 6 experiments run at EN Beam Line.
- Oct Dec 2016, campaign at Grand Raiden Beam line.

CAGRA Board

Due to the expansion in scope of the Physics program that resulted from the 2013 workshop, it was decided to appoint a board to examine issues when needed.

CAGRA board members

- CARPENTER Michael (Chair, ANL)
- IDEGUCHI Eiji (vice chair, RCNP)
- KOIKE Takeshi (Tohoku University)
- FALLON Paul (LBNL)
- WERNER Volker (TU Darmstadt)
- AOI Nori (RCNP)
- BRACCO Angela (Milano)
- GARG Umesh (University of Notre Dame)
- von NEUMANN-COSEL Peter (TU Darmstadt)
- SAKURAI Hiroyoshi (RIKEN/Tokyo)
- SHIMOURA Susumu (CNS)
- TAMII Atsushi (RCNP)
- ZEGERS Remco G. T. (NSCL)

CAGRA Status: Detector Availiability

6 Clovers + Compton Suppression Shields from Tohuku University. Inventory from Hyper-Nuclei program at JPARC (T. Koike)

10 Clovers + Compton Suppression Shields come from CloverShare in USA. (M.P. Carpenter, P. Fallon)

2 Clover Detectors from Army Research Laboratory USA - can be used in Compton Suppression Shields (Jeff Carroll)

3 Clover Detectors from IMP China – larger and do not have Compton Shields.

Other collaborators with Clover detectors are welcome!

U.S. Clover Share Collaboration

Steering Committee:

J. Burke (LLNL), M. P. Carpenter (ANL), P. Fallon (LBNL), S. Liddick (MSU, chair)

Steering committee is responsible for prioritizing requests for the Yale Compton-Suprressed Clover detectors based on scientific merit and institutional scheduling constraints.

Experimental Campaigns:

- NSCL: Mar–May 2014 (Beta Decay Studies) 9 Clovers
- RCNP: Feb-May 2015 (In-Beam) 10 Clovers + Shields
- Texas A&M: Aug-Oct 2015 (In-Beam) 7 Clovers + Shields.
- Notre Dame: Mar. 2016 Jun 2016 (In-Beam) 7 Clovers + Shields
- RCNP: Oct-Dec. 2016 Coupled to Grand Raiden Spectrometer.

Compton Suppression

Simulation of Efficiency

16 Compton suppressed Clover Ge detectors

Future Possibilities: Ge Tracking Detector

Gretina Detector 1π Ge tracking array

- 36 segments/crystal
- 1 central contact
- 4 crystals/module
- Gretina has 10 modules
- RCNP 1 Gretina module (N. Aoi, E. Ideguchi)

- By measuring pulse shapes on all pads, γ-ray interactions can be isolated to ~ 2mm.
- Compton-suppression can be obtained by applying Compton formula.
- Provides superior Doppler reconstruction.

 E_{γ} = 2 MeV, v/c = 8.4%

CAGRA Status: Hardware Components

Digitizer Module (LBNL)

10 Channel
14 Bit, 100 MHz
Energy
Leading Edge Timing
Constant Fraction Timing
Pulse Shape

Trigger Timing and Control Module (ANL)

- 1 Master, 1 Router/8 Digitizers
 Sync All Clocks
 Fast Multiplicty Triggers ~ 500ns
 Slow triggers ~ 2∫ sec
 - Multiplicty
 - Energy

Firmware developed at ANL and will be implemented in Majorana Demonstrator both of which utilize the same hardware developed for GRETINA.

Interfacing CAGRA with Grand Raiden

- Generic interface to auxiliary detectors for both Gammasphere and GRETINA (MyRIAD)
 - A generic interface between the SERDES link, VME and ECL/NIM
 - Large number of ECL I/O
 - Good number of NIM I/O with fast receivers
 - Works in any VME crate (standard or VME64)
 - Sufficient FPGA for general gating logic
 - Large FIFO allowing buffering of auxiliary detector data
 - Capable of acting as FERA data receiver if needed
 - Current Implementations Chico 2, Phoswich wall, RCNP VME DAQ, Goddess – ORNL VME DAQ.
 - Future Implementations LaBr detector array, Microball Hybrid.

CAGRA: RCNP Campaigns

EN beam line for RI beam

CAGRA: First Tests at Tohuka University

Purpose:

Testing of digital electronic with Tohoku clovers in coincidence mode
Reproduce level scheme of ¹³⁶Nd

Experimental Setup:

16 Clovers and BGO ACSs in the Hyperball-2 frame

²⁰Ne beam at 87 MeV, 3pnA

Img/cm² ¹²⁰Sn target with Au backing (or ²⁰⁶Pb)

Pb collimator on BGO ACS

1 3 shifts approved at CYRIC Accelerator Facility Feb, 2014.

Data taken with digital DAQ.

EN Beam Line

RCNP secondary beam line using Heavy Ion Beams

T. Shimoda et al., NIM B70 (1992) 320. S. Mitsuoka et al., NIM A372 (1996) 489.

RI beam with beam energy from low (~ MeV/u) to high (~several tens MeV/u) can be delivered. Maximum rigidity3.2 TmEnergy acceptance $\otimes E/E = 16 \%$ Angular acceptance $\ll = 40 mrad$ $\bigotimes = 28 mrad$ Path length16.8 m

Experiments of First CAGRA Campaign

Experiments using stable beam

- 1. Study of superdeformed structure in ⁴⁴Ti, ⁴⁵Sc (E. Ideguchi, RCNP-Osaka)
- 2. Structure of excited states above the long-lived $(T_{1/2} \sim 1.5 \times 10^5 \text{y})$, $K^{\pi} = 8^+$ isomer in ¹⁸⁶Re (F.G. Kondev, ANL)

Experiments using unstable beam

- Probing High-Spin States in ^{61,62}Fe Using the ⁴⁸Ca(¹⁷N,pxn) Reaction (M.P. Carpenter, ANL)
- Study of High-Spin States by RI Beam Induced Fusion Reaction (A. Odahara, Osaka)
- 3. Study of shell evolution at N=20 in neutron-rich region through nucleon transfer reaction (T. Yamamoto, RCNP-Osaka)
- Spectroscopy of ¹⁵B: A search for unexpected bound states (C.R. Hoffman, ANL)

E438 Experiment E - E. Ideguchi

E438, E. Ideguchi

- Study of superdeformed structure in ⁴⁴Ti, ⁴⁵Sc
 - Investigate higher spin states of SD band in ⁴⁴Ti
 - Life time measurement of ⁴⁴Ti SD band
 - Search for SD band in ⁴⁵Sc
 - Search for octupole collectivity built on the SD band of ⁴⁴Ti

Octupole excitation :

- [200]1/2 → [321]5/2
- [321]3/2 → [202]3/2

Spectroscopy of ¹⁵B: A search for unexpected bound states – E437 (Hoffman)

- Physics motivation
 - Determine if smooth trend of lowest-lying 2-particle excitation as a function of binding energy is robust for weakly bound N=10 isotones, e.g., ¹⁵B
- Measurement

6

N = 8

AE [MeV]

- Experimental details
 - ¹⁶C beam produced at >10⁵ pps and 60 MeV/u.
 - Recoils were identified in Si array telescope
 - γ-ray coincidences measured between CAGRA and ¹⁵B recoils in the Si array telescope and the incoming ¹⁶C beam by was tracked by PPACs

 ${}^{15}B S_n = 2.77(3) MeV$

CAGRA-Grand Raiden Campaign at RCNP

Purpose: To perform high-resolution coincident measurements between reacting light-ions (Grand Raiden) and de-excitation γ -rays (CAGRA).

RCNP, Tohoku, ANL, LBNL, Milano, TU-Darmstadt, GSI, Köln, KVI, IFJ-PAN, IMP, York, ARL, ... Study of PDR by $(p, p'\gamma)$ and $(\langle , \langle '\gamma \rangle$

(p,p' γ) and (α , α ' γ) for PDR in ⁶⁴Ni, ^{90,94}Zr, ^{120,124}Sn, ^{206,208}Pb

Total of 36 days for all measurements

A. Bracco, F. Crespi, V. Derya, M.N. Harakeh, T. Hashimoto, C. Iwamoto, A. Maj, P. von Neumann-Cosel, N. Pietralla, D. Savran, A. Tamii, V. Werner, and A. Zilges *et al*.

(⁶Li, ⁶Li'+γ): a new probe of IV Spin-Flip Excitations

Excitation of High-Spin States by Nuclear Interaction of light particles

E. Ideguchi, A. Tamii et al.

- With ⁴⁰Ca(⁶Li,d)⁴⁴Ti measure excitation energy with GR and study γ de-excitation with CAGRA.
- Does this give us access to non-yrast states at high-spin, and thus provide a method to study states which are inaccessible using other types of reactions?

M.Itoh, S.Kishi, H.Sakaguchi et al, to be published.

Populate states with ²⁸Si(α, α') and study γ decay by selecting excitation energy from GR.

Test Run - June 2016

Target: ²⁰⁸Pb Beam: ⁴He [10nA @ 130MeV] - *Run2010*

Chris Sullivan I NSCL

26

CAGRA at Grand Raiden

- Due to harsh conditions at target position during beam tuning, Ge detectors must not be present.
- This is accomplished by moving entire frame.
- First move to target position with Ge's installed yesterday!

Upcoming Beam Schedule for CAGRA-GR

Oct-3: 9 am (the beam energy might be changed to a130)						
CAGE	RA	a 140	2.0 days AVF	commissioning		
E450		a 140	0.9 days AVF	tuning/calibrati	ons	2.9 days
E450	Bracco et al.	a 140	1.5 days AVF	prio-1 90Zr	4.5-deg	
E450	Bracco et al.	a 140	1.5 days AVF	prio-1 94Zr	4.5-deg	
E454	Savran et al.,	a 140	1.5 days AVF	⁶⁴ Ni	4.5-deg	
E450	Zilges et al.	a 140	1.8 days AVF	prio-2 ¹²⁰ Sn	4.5-deg	
E450	Zilges et al.	a 140	1.8 days AVF	prio-2 ¹²⁴ Sn	4.5-deg	
E450	Savran et al.	a 140	3.0 days AVF	prio-3 ²⁰⁶ Pb	4.5-deg	
E450	Savran et al.	a 140	3.0 days AVF	prio-3 ²⁰⁸ Pb	4.5-deg	
E470	Jenkins	a 140	6.0 days AVF	²⁸ Si	10 deg	20.1 days
Oct-26: 9 am— break						
Nov 3:	9 am					
E450		p80	1.6 days AVF	tuning/calibrati	ons	1.6 days
E450	Iwamoto et al.	p80	5.0 days AVF	prio-1 ²⁰⁸ Pb	4.5, 6.8, 9	9.1, 11.4 deg
E450	Bracco et al.	p80	1.0 days AVF	prio-1 90Zr	4.5-deg	
E450	Bracco et al.	p80	1.0 days AVF	prio-1 94Zr	4.5-deg	
E450	Zilges et al.	p80	1.2 days AVF	prio-2 ¹²⁰ Sn	4.5-deg	
E450	Zilges et al.	p80	1.2 days AVF	prio-2 ¹²⁴ Sn	4.5-deg	
E450	Savran et al.	p80	2.0 days AVF	prio-3 ²⁰⁶ Pb	4.5-deg	11.4 days
Nov 16: 9 am —- break (annealing/maintenance) 0-dg setup						
Dec 3:	9 am					
E454	Savran et al.,	p300	4.5 days RING	⁶⁴ Ni	0-deg	4.5 days
Dec 7: 9 pm—- break						
Dec 13: 9 am						
E441	Noji et al.	6Li600	5.0 days RING	⁵⁶ Fe, ¹² C, ⁹³ Nb, ¹²⁴ Sn, ²⁴ M	g0-deg	5.0 days
Beam line modification for GRAF						0.5 days
E471	Ideguchi et al.,	⁶ Li600	3.0 days RING	⁴⁰ Ca or ¹⁰⁰ Mo	11 deg	3.0 days
Dec 21: 9 pm						

Summary

- ✦ CAGRA is a project partially funded by DOE through FOA DE-PS02-08ER08-10 for experimental campaigns in Japan.
- ✦ First experiments are at RCNP Osaka: Campaign I was at the EN Course where 6 experiments were performed Feb-May 2015.
- The Grand-Raiden campaign will begin next week and run through Dec. 2016.
- ✤ Topics to be explored
 - ${\it CM}$ Characterization of the PDR as a function of Z and N with both p and α probes.
 - C3 Measure of the GT response function using the (${}^{6}Li, {}^{6}Li' + \gamma$) reaction.
 - ✓Search for rare decays and shapes in ²⁸Si and ⁴⁰Ca using light-ion scattering.
- Thank you to A. Tamii and E. Ideguchi for supply material for a number of the slides in this talk.