CAGRA at Grand Raiden

Compton Array Gamma-ray spectrometer at RCNP/RIBF
for **Advanced studies**

NNR16 Workshop
RCNP
September 30, 2016
M.P. Carpenter
Outline of Talk:

• Short history of the CAGRA collaboration
• The components of CAGRA
• RCNP campaigns
 – En Course campaign
 – Grand Raiden campaign
• Summary
CAGRA project

- Create a pool of Compton Suppressed Ge Clover detectors from laboratories in Japan and the U.S. + China which can be assembled at RCNP/RIBF to be utilized in gamma-ray spectroscopy.
- Physics experiments at RCNP using EN, GR, MuSIC
- At RIBF using both energy degraded and stopped beams of exotic nuclei.
- Mechanical Infrastructures to be built
 - Self contained, trigger-less acquisition system using Gretina Digitizers
 - Liquid Nitrogen filling system
 - Support structure
- Original Physics Scope
 - Multi-Step Coulomb excitation
 - Transfer or Deep Inelastic reactions
 - Fusion Evaporation
 - Stopped Beams
DOE Funding

FINANCIAL ASSISTANCE
FUNDING OPPORTUNITY ANNOUNCEMENT

U.S. Department of Energy
Office of Science
Office of Nuclear Physics
Research Opportunities at Rare Isotope Beam Facilities

Funding Opportunity Number: DE-PS02-08ER08-10

Project funded through FOA at ~$720,000
CAGRA: DOE Funded items

• Mechanical Infrastructure (Deliverables)
 – Self contained, trigger-less acquisition system using Gretina Digitizers
 – Liquid Nitrogen fill system
 – Support structure
 – High Voltage supply system (ISEG)

• Shipping costs between USA and Japan

• Travel and per diem for USA researchers to setup and operate device in Japan
CAGRA: Brief History

- Dec. 2008, workshop at ANL to discuss physics opportunities at RIBF using Clover Array.
- Apr. 2010, notified that proposal is accepted and will receive funding.
- Nov. 2010, DOE funding begins.
- Dec. 2012, workshop to discuss physics opportunities at RCNP and RIBF held at RCNP - recommendation was to explore siting CAGRA at RCNP first.
- December 2013, workshop to discuss physics opportunities at RCNP & RIBF with CAGRA with the emphasis on RCNP
 - EN beam line - in flight RIB production capability
 - Grand Raiden beam line to couple CAGRA with the large spectrometer.
- April 2014 - proposal submitted to RCNP P-PAC and received recommendation to run a campaign of CAGRA experiments in 2015 and 2016.
- Mar – May 2015, campaign of 6 experiments run at EN Beam Line.
- Oct – Dec 2016, campaign at Grand Raiden Beam line.
CAGRA Board

Due to the expansion in scope of the Physics program that resulted from the 2013 workshop, it was decided to appoint a board to examine issues when needed.

CAGRA board members

- CARPENTER Michael (Chair, ANL)
- IDEGUCHI Eiji (vice chair, RCNP)
- KOIKE Takeshi (Tohoku University)
- FALLON Paul (LBNL)
- WERNER Volker (TU Darmstadt)
- AOI Nori (RCNP)
- BRACCO Angela (Milano)
- GARG Umesh (University of Notre Dame)
- von NEUMANN-COSEL Peter (TU Darmstadt)
- SAKURAI Hiroyoshi (RIKEN/Tokyo)
- SHIMOURA Susumu (CNS)
- TAMII Atsushi (RCNP)
- ZEGERS Remco G. T. (NSCL)
CAGRA Status: Detector Availability

6 Clovers + Compton Suppression Shields from Tohuku University. Inventory from Hyper-Nuclei program at JPARC (T. Koike)

10 Clovers + Compton Suppression Shields come from CloverShare in USA. (M.P. Carpenter, P. Fallon)

2 Clover Detectors from Army Research Laboratory USA - can be used in Compton Suppression Shields (Jeff Carroll)

3 Clover Detectors from IMP China – larger and do not have Compton Shields.

Other collaborators with Clover detectors are welcome!
U.S. Clover Share Collaboration

Steering Committee:
J. Burke (LLNL), M. P. Carpenter (ANL), P. Fallon (LBNL), S. Liddick (MSU, chair)

Steering committee is responsible for prioritizing requests for the Yale Compton-Suppressed Clover detectors based on scientific merit and institutional scheduling constraints.

Experimental Campaigns:
- NSCL: Mar–May 2014 (Beta Decay Studies) – 9 Clovers
- RCNP: Feb-May 2015 (In-Beam) – 10 Clovers + Shields
- Notre Dame: Mar. 2016 – Jun 2016 (In-Beam) - 7 Clovers + Shields
Compton Suppression

Vastly improved peak to background

Suppressed and Unsuppressed 60Co spectrum
Simulation of Efficiency

- 16 Compton suppressed Clover Ge detectors
 - 4 detectors at 45°
 - 8 detectors at 90°
 - 4 detectors at 135°
- Target — Ge: 16cm
- $\varepsilon_{\text{ph}}(1\text{MeV}) \sim 6\%$

![Diagram showing detector arrangement and energy distribution graph]

Graph:
- Blue line: before add back eff [%]
- Red line: after add back eff [%]

Axes:
- X-axis: Energy [keV]
- Y-axis: Photo peak efficiency [%]
Future Possibilities: Ge Tracking Detector

Gretina Detector

1π Ge tracking array

- 36 segments/crystal
- 1 central contact
- 4 crystals/module
- Gretina has 10 modules
- RCNP – 1 Gretina module (N. Aoi, E. Ideguchi)

- By measuring pulse shapes on all pads, γ-ray interactions can be isolated to ~ 2mm.
- Compton-suppression can be obtained by applying Compton formula.
- Provides superior Doppler reconstruction.

$E_\gamma = 2$ MeV, $v/c = 8.4\%$
CAGRA Status: Hardware Components

Digitizer Module (LBNL)
• 10 Channel
• 14 Bit, 100 MHz
• Energy
• Leading Edge Timing
• Constant Fraction Timing
• Pulse Shape

Trigger Timing and Control Module (ANL)
• 1 Master, 1 Router/8 Digitizers
• Sync All Clocks
• Fast Multiplicity Triggers ~ 500ns
• Slow triggers ~ 2 sec
 • Multiplicity
 • Energy

Firmware developed at ANL and will be implemented in Majorana Demonstrator both of which utilize the same hardware developed for GRETINA.
Interfacing CAGRA with Grand Raiden

- Generic interface to auxiliary detectors for both Gammasphere and GRETINA (MyRIAD)
 - A generic interface between the SERDES link, VME and ECL/NIM
 - Large number of ECL I/O
 - Good number of NIM I/O with fast receivers
 - Works in any VME crate (standard or VME64)
 - Sufficient FPGA for general gating logic
 - Large FIFO allowing buffering of auxiliary detector data
 - Capable of acting as FERA data receiver if needed
 - Current Implementations - Chico 2, Phoswich wall, RCNP VME DAQ, Goddess – ORNL VME DAQ.
 - Future Implementations – LaBr detector array, Microball Hybrid.
CAGRA: RCNP Campaigns

Group shot from E436

Double arm spectrometer (Grand Raiden & LAS)

EN beam line for RI beam

K140 AVF cyclotron
p ~ Xe
Pol. p & d

p: 400MeV
HI:100MeV/u
CAGRA: First Tests at Tohuka University

Purpose:
- Testing of digital electronic with Tohoku clovers in coincidence mode
- Reproduce level scheme of 136Nd

Experimental Setup:
- 6 Clovers and BGO ACSs in the Hyperball-2 frame
- 20Ne beam at 87 MeV, 3pnA
- 1mg/cm^2 120Sn target with Au backing (or 206Pb)
- Pb collimator on BGO ACS
- 3 shifts approved at CYRIC Accelerator Facility Feb, 2014.
- Data taken with digital DAQ.
EN Beam Line

RCNP secondary beam line using Heavy Ion Beams

RI beam with beam energy from low (∼ MeV/u) to high (∼several tens MeV/u) can be delivered.

Maximum rigidity 3.2 Tm
Energy acceptance $\otimes E/E = 16 \%$
Angular acceptance $\otimes = 40 \text{ mrad}$
$\otimes = 28 \text{ mrad}$
Path length 16.8 m
- CAGRA Array

- High-rate capability using
- fast digital DAQ system
- stands for 10 times stronger
- beam intensity: 2pA → 20pA
Experiments of First CAGRA Campaign

Experiments using stable beam
1. Study of superdeformed structure in 44Ti, 45Sc (E. Ideguchi, RCNP-Osaka)
2. Structure of excited states above the long-lived ($T_{1/2} \sim 1.5 \times 10^5$ y), $K^{\pi} = 8^+$ isomer in 186Re (F.G. Kondev, ANL)

Experiments using unstable beam
1. Probing High-Spin States in 61,62Fe Using the 48Ca$(^{17}$N,pxn) Reaction (M.P. Carpenter, ANL)
2. Study of High-Spin States by RI Beam Induced Fusion Reaction (A. Odahara, Osaka)
3. Study of shell evolution at N=20 in neutron-rich region through nucleon transfer reaction (T. Yamamoto, RCNP-Osaka)
4. Spectroscopy of 15B: A search for unexpected bound states (C.R. Hoffman, ANL)
E438, E. Ideguchi

- Study of superdeformed structure in 44Ti, 45Sc
 - Investigate higher spin states of SD band in 44Ti
 - Life time measurement of 44Ti SD band
 - Search for SD band in 45Sc
 - Search for octupole collectivity built on the SD band of 44Ti

Octupole excitation:
- $[200]1/2 \rightarrow [321]5/2$
- $[321]3/2 \rightarrow [202]3/2$

Q_t is not determined
Spectroscopy of ^{15}B: A search for unexpected bound states – E437 (Hoffman)

- **Physics motivation**
 - Determine if smooth trend of lowest-lying 2-particle excitation as a function of binding energy is robust for weakly bound $N=10$ isotones, e.g., ^{15}B

- **Measurement**
 - Proton removal from ^{16}C to search for new bound states in ^{15}B

- **Experimental details**
 - ^{16}C beam produced at $>10^8$ pps and 60 MeV/u
 - Recoils were identified in Si array telescope
 - γ-ray coincidences measured between CAGRA and ^{15}B recoils in the Si array telescope and the incoming ^{16}C beam by was tracked by PPACs
CAGRA-Grand Raiden Campaign at RCNP

Purpose: To perform high-resolution coincident measurements between reacting light-ions (Grand Raiden) and de-excitation γ-rays (CAGRA).

RCNP, Tohoku, ANL, LBNL, Milano, TU-Darmstadt, GSI, Köln, KVI, IFJ-PAN, IMP, York, ARL, …
Study of PDR by $(p,p'\gamma)$ and $(\alpha,\alpha'\gamma)$ for PDR in 64Ni, 90,94Zr, 120,124Sn, 206,208Pb

Total of 36 days for all measurements

PDR structure
transition density, isospin-structure, angular dependence

A. Bracco, F. Crespi, V. Derya, M.N. Harakeh, T. Hashimoto, C. Iwamoto, A. Maj, P. von Neumann-Cosel, N. Pietralla, D. Savran, A. Tamii, V. Werner, and A. Zilges et al.
(\(^6\text{Li}, \ ^6\text{Li}'+\gamma\)): a new probe of IV Spin-Flip Excitations

A direct probe for GT\(_0\)
- Final 3.56 MeV state has \(J^n = 0^+\), \(T = 1\)
 - Selectivity \(\triangle S = 1\), \(\triangle T = 1\), \(\triangle T_z = 0\) guaranteed.
 - cf. \((p,p')\): 1/2+, 1/2 \(\rightarrow\) 1/2+, 1/2
- \(\gamma\) decay directly to the ground state.
 - Reaction channel is identified by coincidence with 3.56 MeV \(\gamma\) ray

- Crucial for \(r\)-process and \(v\)-postprocess
- A > 80: invaluable for validation of theory

Future:
- GT\(_0\) responses in \(n\)-rich rare isotopes by \((\ ^6\text{Li},\ ^6\text{Li}')\) in inverse kinematics

- SN nucleosynthesis: \(^{11}\text{B}\)
- Compare directly-measured INNS cross section

- SN nucleosynthesis: \(^{92}\text{Nb}\)
- Competition NC vs CC: need exp. info.

- Energy dissipation in SN
- SN neutrino detection
 - Isoscaler spin-M1 states, isospin mixing
 - Basic study of the nature of the probe
Excitation of High-Spin States by Nuclear Interaction of light particles

E. Ideguchi, A. Tamii et al.

From heavy-ion fusion

• With $^{40}\text{Ca} (^{6}\text{Li},d)^{44}\text{Ti}$ measure excitation energy with GR and study γ de-excitation with CAGRA.

• Does this give us access to non-yrast states at high-spin, and thus provide a method to study states which are inaccessible using other types of reactions?

Search for superdeformed states in ^{28}Si
D. Jenkins et al.

Populate states with $^{28}\text{Si(\alpha,\alpha')}$ and study γ-decay by selecting excitation energy from GR.
Test Run - June 2016

Target: ^{208}Pb Beam: ^4He [10nA @ 130MeV] - Run2010 Chris Sullivan | NSCL
CAGRA at Grand Raiden

- Due to harsh conditions at target position during beam tuning, Ge detectors must not be present.
- This is accomplished by moving entire frame.
- First move to target position with Ge’s installed – yesterday!
Upcoming Beam Schedule for CAGRA-GR

<table>
<thead>
<tr>
<th>Oct-3: 9 am</th>
<th>CAGRA</th>
<th>(\alpha_{140})</th>
<th>2.0 days AVF</th>
<th>commissioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>E450</td>
<td>(\alpha_{140})</td>
<td>0.9 days AVF</td>
<td>tuning/calibrations</td>
<td>... 2.9 days</td>
</tr>
<tr>
<td>E450</td>
<td>Bracco et al.</td>
<td>(\alpha_{140})</td>
<td>1.5 days AVF</td>
<td>(^{90}\text{Zr})</td>
</tr>
<tr>
<td>E450</td>
<td>Bracco et al.</td>
<td>(\alpha_{140})</td>
<td>1.5 days AVF</td>
<td>(^{94}\text{Zr})</td>
</tr>
<tr>
<td>E450</td>
<td>Savran et al.,</td>
<td>(\alpha_{140})</td>
<td>1.5 days AVF</td>
<td>(^{64}\text{Ni})</td>
</tr>
<tr>
<td>E450</td>
<td>Zilges et al.</td>
<td>(\alpha_{140})</td>
<td>1.8 days AVF</td>
<td>(^{120}\text{Sn})</td>
</tr>
<tr>
<td>E450</td>
<td>Zilges et al.</td>
<td>(\alpha_{140})</td>
<td>1.8 days AVF</td>
<td>(^{124}\text{Sn})</td>
</tr>
<tr>
<td>E450</td>
<td>Savran et al.</td>
<td>(\alpha_{140})</td>
<td>3.0 days AVF</td>
<td>(^{206}\text{Pb})</td>
</tr>
<tr>
<td>E450</td>
<td>Savran et al.</td>
<td>(\alpha_{140})</td>
<td>3.0 days AVF</td>
<td>(^{208}\text{Pb})</td>
</tr>
<tr>
<td>E470</td>
<td>Jenkins</td>
<td>(\alpha_{140})</td>
<td>6.0 days AVF</td>
<td>(^{78}\text{Si})</td>
</tr>
</tbody>
</table>

Oct-26: 9 am — break

<table>
<thead>
<tr>
<th>Nov 3: 9 am</th>
<th>E450</th>
<th>p80</th>
<th>1.6 days AVF</th>
<th>tuning/calibrations</th>
<th>... 1.6 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>E450</td>
<td>Iwamoto et al.</td>
<td>p80</td>
<td>5.0 days AVF</td>
<td>(^{208}\text{Pb})</td>
<td>4.5, 6.8, 9.1, 11.4 deg</td>
</tr>
<tr>
<td>E450</td>
<td>Bracco et al.</td>
<td>p80</td>
<td>1.0 days AVF</td>
<td>(^{90}\text{Zr})</td>
<td>4.5-deg</td>
</tr>
<tr>
<td>E450</td>
<td>Bracco et al.</td>
<td>p80</td>
<td>1.0 days AVF</td>
<td>(^{94}\text{Zr})</td>
<td>4.5-deg</td>
</tr>
<tr>
<td>E450</td>
<td>Zilges et al.</td>
<td>p80</td>
<td>1.2 days AVF</td>
<td>(^{120}\text{Sn})</td>
<td>4.5-deg</td>
</tr>
<tr>
<td>E450</td>
<td>Zilges et al.</td>
<td>p80</td>
<td>1.2 days AVF</td>
<td>(^{124}\text{Sn})</td>
<td>4.5-deg</td>
</tr>
<tr>
<td>E450</td>
<td>Savran et al.</td>
<td>p80</td>
<td>2.0 days AVF</td>
<td>(^{206}\text{Pb})</td>
<td>4.5-deg</td>
</tr>
</tbody>
</table>

Nov 16: 9 am — break (annealing/maintenance) 0-deg setup

<table>
<thead>
<tr>
<th>Dec 3: 9 am</th>
<th>E454</th>
<th>p300</th>
<th>4.5 days RING</th>
<th>(^{64}\text{Ni})</th>
<th>0-deg</th>
<th>... 4.5 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dec 7: 9 pm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>break</td>
</tr>
</tbody>
</table>

Dec 13: 9 am	E441	Noji et al.	\(^{6}\text{Li}600 \)	5.0 days RING	\(^{19}\text{Fe}, ^{19}\text{Cr}, ^{18}\text{O}, ^{19}\text{Sn}, ^{19}\text{Mg} \)	0-deg	... 5.0 days
Beam line modification for GRAF							... 0.5 days
E471	Ideguchi et al., \(^{6}\text{Li}600 \)	3.0 days RING	\(^{40}\text{Ca} \) or \(^{100}\text{Mo} \)	11 deg	... 3.0 days		
Summary

- CAGRA is a project partially funded by DOE through FOA DE-PS02-08ER08-10 for experimental campaigns in Japan.
- First experiments are at RCNP Osaka: Campaign I was at the EN Course where 6 experiments were performed Feb-May 2015.
- The Grand-Raiden campaign will begin next week and run through Dec. 2016.
- Topics to be explored
 - Characterization of the PDR as a function of Z and N with both p and α probes.
 - Measure of the GT response function using the \((^6\text{Li},^6\text{Li}'+\gamma)\) reaction.
 - Search for rare decays and shapes in ^{28}Si and ^{40}Ca using light-ion scattering.
- Thank you to A. Tamii and E. Ideguchi for supply material for a number of the slides in this talk.