Neutrino nuclear responses ,NMEs, for ββ and astro physics by nuclear charge exchange reaction.

Axial vector GT SD SO NMEs

Hiro Ejiri RCNP Osaka 2016.9. NNR16 RCNP Osaka

Neutrino-less ββ in Nuclear Femto (fm) Lab

Nuclear matrix element NMEs

Detector v-mass sensitivities $< m_{\nu} > = k [M^{0\nu}]^{-1} G^{-1/2} (NT)^{-1/4} (BG)^{1/4}$ $M = g_A^2 M_{DA} + g_F^2 M_{DF}$ $M_A = \langle \sigma \tau h \sigma \tau \rangle$ $M_F = \langle \tau h \tau \rangle$ $h \sim k/(r_1 - r_2)$ $T=Gm^2M^2$, $g^2_A \overline{M}_{DA} \sim \overline{\Sigma} g_A \overline{M}_B h g_A \overline{M}_B$ If $g_A M_{SB}$ is reduced to 0.7,

T to 1/3, N 1 10 tons

Momentum transfer $0\nu\beta\beta$ ν exchange $q \sim 1/\Delta r = 1-0.3 \text{ fm}^{-1}$ $\Delta l = qR = 1-2$ $J^{\pi} = 1+, 2-, 3+, 4-$ Axial vector $M_A(J)$ $M_A(J) = g_A \tau [\sigma \times f(r) Y_1]_J$

Crucial questions on NMEs for 0νββ exps.

	2νββ		0νββ		
CER is possible ?	q=0 GT 1+	Yes	q≠0 SD 2- ,3+	No ?	
NME is reduced ?	GT g_{pp} cancell	Yes	Many J, not g _{pp}	No?	
NMEs reflect nucl. structure ?	Sensitive to nuclea structures as it is.	r. Yes	No sensitive, univer because of many J.	rsal No?	
Solar v BGs ?	Rate is very small	No	Solar v serious.	No?	

If all NO, NMEs would be all large and same, no worry about NMEs Just detectors with large N(enriched isotopes) and small BG($2\nu\beta\beta$) We show all YES, and thus need CERs and theories to study NMEs.

Q1. CERs for $0\nu\beta\beta\nu$ responses of $q\sim60$ MeV/c. Yes

High E resolution (³He,t) CERs at RCNP Osaka

Te: Puppe, Akimune, Frekers, Ejiri, et al. PRC 86 044603 2012 CER EXP at RCNP Akimune, H.Ejiri, D.Frekers et al 1994-2016.

SD NMES M(FSQP) = k M(EXP). H. Ejiri D. Frekers J. Physics G. Lett. 43 2016 11LT01

 $\frac{\sigma_{\alpha}(q,\omega)}{d\Omega} = K(E_i,\omega)f_{\alpha}(q)N_{\alpha}^D(q,\omega)J_{\alpha}^2B(\alpha), \qquad B_{\alpha}(SD) = R_{\alpha}B_{R\alpha}(SD) \quad M_{\alpha}(SD) = B_{\alpha}(SD)^{1/2}$ α denotes the Fermi, GT and SD mode excitation $B_{R\alpha}(SD) = [\frac{d\sigma_{SD}(\theta_1)}{d\Omega}][\frac{d\sigma_{\alpha}(\theta_0)}{d\Omega}]^{-1}B(\alpha),$

SD NMEs with k~0.25 g_A from ft data in neighboring nuclei. Exps in May on SD with Akimune Ejiri, Frekers et al. Sept 30th

CER (μ , ν_{μ} , xn γ) ν - $\tau(\beta)$ + responses with q~50-60 MeV/c

 γ_i from ¹⁰⁰⁻ⁱNb gives relative strength &life tlme the absolute strength

H. Ejiri Proc. e-γ conference Sendai 1972 I. Hashim PhD Thesis 2015; I. Hashim H. Ejiri , NNR14, MXG16 Observed isotope population agrees with calculation with µ- GR as given below. H. Ejiri et al. JPSJ 84 044202 2013 I. Hashim PhD Thesis 2015

FIG. 4: The same as Fig. 2 but for the nuclei ^{66}Zn and $^{90}Zr.$

Haris Kosmas

Double charge exchange reaction * RCNP 0.9 GeV ¹¹B, ¹¹Li

¹³C strengths at low high states
⁵⁶Fe no low states, mostly GRs
ΣB(GT) low < 0.1 B(GT) GR

 $\Sigma B(GTGT) low < 0.01 B(GTGT) GR$

Takahisa Ejiri et al 2010

Q2. Axial vector single β decay NMEs GT 1⁺, SD 2⁻, SH 4⁻ are reduced Yes

4. They mix destructively via repulsive interaction as $|np\rangle = |n_0 p_0\rangle - \varepsilon | n\tau\sigma GR\rangle - \delta |\Delta GR\rangle$ GR and other effects are uniform, and are given by experimental renormalization of M=k^{eff} M⁰ (QP) k^{eff} = k^{eff} ($\tau\sigma$)x k^{eff} (Δ)=[1/(1+ $\chi_{\tau\sigma}$)][1/(1+ χ_M)]

GT 1⁺ 2⁻, 4⁻ τσ axial vecor NMEs reductions

$$M_{exp} < M_{qp}$$

$$M_{exp}^{m} = k M_{qp}$$

$$k = 0.2 - 0.3 = k_{\tau\sigma} k_{NM}$$

$$M_{QRPA}^{m} = k_{\tau\sigma} M_{QP}$$

$$k_{\tau\sigma} \sim 0.4 \quad NN \quad \tau\sigma$$

$$M_{exp}^{m} = k_{NM} M_{QRPA}$$

$$M_{NM}^{m} \sim 0.6 = g_{A}^{eff} / g_{A} \quad N\Delta NM$$

k

H, Ejiri J. Suhonen J. Phys. G. 42 2015 055201 H. Ejiri N. Soucouti, J. Suhonen PL B 729 27 L. Jokiniemi J. Suhonen H. Ejiri (Sept.29th) arXiv 1604.04399v1

Universal reductions

M(SL)= $\langle \tau^{\pm} (\sigma \times r^{I}Y_{I} \rangle_{J}$ Use M(EXP)=k M(QP) k~0.25-0.30 for J=1,2,4 Exp. NME, NO Quenching.

k=k(τσ) k(NM)~0.3 k=k(τσ)~0.5 τσ GR K(NM)~ g^{eff}_A/g_A~0.6 Δ isobar GR

Q3. 0vββ NMEs are reduced and depend on nuclear structures like 2vββ NMEs, YES

FSQP: Fermi Surface Quasi Particle Model *

Ground state 0^+ (nn) $\rightarrow 0^+$ (pp), n and p are Fermi surface QP

 $\mathbf{M}^{2\nu\beta\beta} = \sum_{k} \mathbf{M}^{-}_{k} \mathbf{M}^{+}_{k} / \Delta_{k} \quad \mathbf{FSQP} \quad \mathbf{No} \ \mathbf{GT} \ \mathbf{GR} \ \mathbf{*}$ $\mathbf{M}^{-}_{k} = (\mathbf{k}^{\mathrm{eff}}_{i}) \ \mathbf{m}_{ij} \mathbf{V}_{n} \mathbf{U}_{p}, \ \mathbf{M}^{+}_{k} = (\mathbf{k}^{\mathrm{eff}}_{f}) \ \mathbf{m}_{ij} \mathbf{U}_{n} \mathbf{V}_{p}, \ (\mathbf{k}^{\mathrm{eff}}_{A})^{2} \sim (0.23)^{2} = 0.05$ $\mathbf{Both} \ \mathbf{vacancy} \ \mathbf{\&occupancy} \ \mathbf{in} \ \mathbf{non-closed} \ \mathbf{shell} \ \mathbf{nuclei}$ $\mathbf{*} \mathbf{H}. \ \mathbf{Ejiri} \ \mathbf{et} \ \mathbf{al}. \ \mathbf{J}. \ \mathbf{Phys.} \ \mathbf{Soc.} \ \mathbf{Japan} \ \mathbf{Lett.} \ \mathbf{65} \ (\mathbf{1996}) \ \mathbf{7}; \ \mathbf{JPSJ} \ \mathbf{78} \ (\mathbf{2009})$

2vββ matrix element

Shell closure effect at N~82,50 No room for β decay proton to neutron

QRPA $0\nu\beta\beta$ NMEs show the shell-closure effects as $2\nu\beta\beta$ NMEs

Q4. Solar v DBD interaction is serious, Yes

A view from the Ejiri-weekend house

Solar-v interactions with nuclei and atomic electrons in DBD detectors are serious BGs

- Solar v unavoidable.
- BG rate need to be $< \beta\beta$ signal rate
- E-resolution is a key element
 - Solar v response by CERs

DBD rates for IH mass are 0.5-0.9 / t y except 0.2 for ⁷⁶Ge Thus solar v BG should be <0.2-0.3 /ty except <0.1 for ⁷⁶Ge

⁸²Se detector δ <0.1 % , and ¹³⁰Te ¹³⁶Xe δ <1% bolometers. No plastic , liquid , ionization chambers.

Solar-v on atomic electrons in liquid scintillators

f= δ/R with δ energy resolution and R DBD isotope concentration, In case of f=5, R=1%, δ =5%, BG ~2.5. Need f=1, R=1% δ =1%

H. Ejiri K. Zuber J. Phys. 43 045201 2016

¹⁰⁰Mo, ¹⁵⁰Nd $\delta < 1.5 \%$, ⁸²Se $\delta < 3 \%$ for 2vββ BG < DBD rates. No scintillators

Crucial questions for v mass studies by 0vββ.								
	2νββ		0νββ					
CER possible ?	q=0 GT 1+	Yes	q≠0 SD 2- ,3+	Yes				
Reduced NME	GT g_{pp} accident.	Yes	Many J, not g _{pp}	Yes				
NME reflects Nucl. structure	NMEs depend on nucl.structure	Yes	All J states involved. No dep.	Yes				
Solar v BG	Rate is too small	No	Solar v serious.	Yes				

So far, all are No, and no worry about NMEs and nuclear physics. Now, all are Yes, we needs exp/theory works for NMEs, Effect of 30% of NMEs (works) ~ 10 tons of DBD isotopes, 300 M \$.

Isotope	A (%)	$Q_{\beta\beta}$ (MeV)	$\frac{G^{0\nu}}{(10^{-14} \text{ y})}$	$T_{1/2}^{0\nu-exp}$ (10 ²⁴ y)	NME	$ \langle m_v \rangle \text{ eV}$ (eV)	Future experiments
⁴⁸ Ca	0.19	4.276	7.15	0.014 [237]	ISM FDF	19.1 7.0	CANDLES
⁷⁶ Ge	7.8	2.039	0.71	19 [36, 227, 228]	ISM, EDF (R)QRPA EDF	(0.20, 0.31) (0.20, 0.32) (0.26, 0.35)	GERDA
	7.8	2.039	0.71	22 [42]	ISM, EDF (R)QRPA EDF	(0.22, 0.29) (0.47, 0.29) (0.18, 0.30) (0.24, 0.32)	_
	7.8	2.039	0.71	16 [229, 230]	ISM, EDF (R)QRPA EDF	(0.55, 0.34) (0.22, 0.35) (0.28, 0.38)	MAJORANA
⁸² Se	9.2	2.992	3.11	0.36 [38, 234, 235]	ISM, EDF (R)QRPA EDF	1.88, 1.17 (0.76, 1.28) (1.12, 1.49)	SuperNEMO MOON
¹⁰⁰ Mo	9.6	3.034	5.03	1.0 [38, 234]	EDF (R)QRPA FDF	0.46 (0.38, 0.73) (0.62, 1.06)	MOON AMoRE
¹¹⁶ Cd	7.5	2.804	5.44	0.17 [238]	EDF (R)ORPA	1.15	COBRA CdWO4
¹³⁰ Te	34.5	2.529	4.89	3.0 [231, 232, 239]	ISM, EDF (R)QRPA EDF	(0.52, 0.27) (0.25, 0.43) (0.33, 0.46)	CUORE
¹³⁶ Xe	8.9	2.467	5.13	5.7 [40]	ISM, EDF (R)ORPA	0.44, 0.23	EXO, NEXT KamLAND-Zen
¹⁵⁰ Nd	5.6	3.368	23.2	0.018 [38, 240]	EDF (R)QRPA	4.68 (2.13, 2.88)	SuperNEMO SNO+ DCBA

LUMUNEU CUPID Li₂MoO₄

Exp.requirements to reach the IH 45-15 $<m_v> = k [M^{0v}]^{-1} G^{-1/2} (NT)^{-1/4} (BG)^{1/4}$

- 1. $g_A M^{0\nu} \sim 3 \rightarrow 1.5$, G ~ 4, NT ~ 1 $\rightarrow 15$ ty for IH
- 2. N~1-10 ton enriched N Not close to magic nuclei.
- 3. $\delta < 0.01$ to reduce $2\nu\beta\beta$ & solar ν BG

4. Particle ID ($\beta / \gamma / \alpha$) to reach BG <<1/t y

⁷⁶Ge SSD, CUPID, ¹⁰⁰Mo scintillation bolometers,

Thank you for your attention

