Magnetic hexadecapole gamma transitions in the Microscopic Quasiparticle-Phonon Model (MQPM)

NNR16, September 29-30, 2016 at Osaka, Japan 29.9.2016 Lotta Jokiniemi University of Jyväskylä, Finland

Motivation

- With the help of reduced matrix elements one can study the probability of transitions
- Earlier studies have revealed that the experimental reduced matrix elements of GT(1+) and SD(2-) β-transitions are reduced much in comparison with the theoretical ones
 - Why?
 - How about the transitions with higher multipolarities?

Introduction

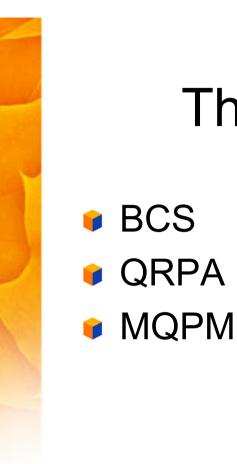
- L. Jokiniemi, J. Suhonen and H. Ejiri. Magnetic <u>hexadecapole</u> γ transitions and neutrino-nuclear responses in medium-heavy nuclei. <u>Adv</u>. High Energy Phys. 2016 (2016) 8417598.
- Highly forbidden (λ =4) β -transitions are rare
 - Not enough data
 - Instead the M4 transitions of the isomeric states were studied
- Transitions examined were stretched M4 transitions in the mass regions of DBD, A=85-115 and A=135-143
- Transitions either $0g_{9/2} \leftrightarrow 1p_{1/2}$ or $0h_{11/2} \leftrightarrow 1d_{3/2}$

Introduction

- Example nuclei either proton or neutron odd
- Reduced matrix elements calculated using BCS and MQPM ^{1/2⁻} theories
 - Comparison with experimental values

$$|M_{4,exp.}| = \sqrt{\frac{(2J_i + 1)\ln 2}{1.899 \times 10^{-6} E^9 t_{\frac{1}{2}}(1 + \alpha)}}$$

Effect of gyromagnetic ratios?

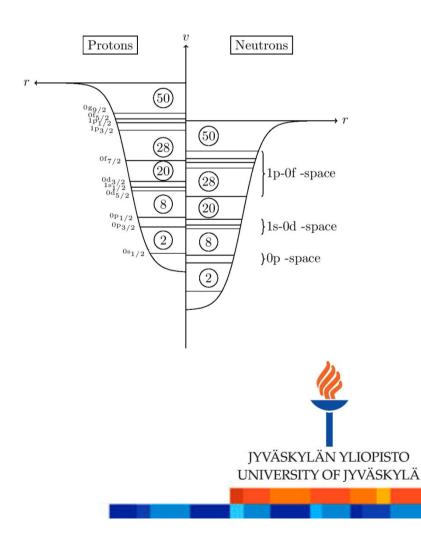

0.537

0.0

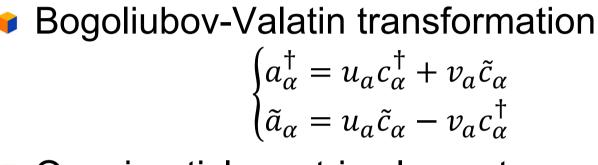
M4

 111 In

7.7m



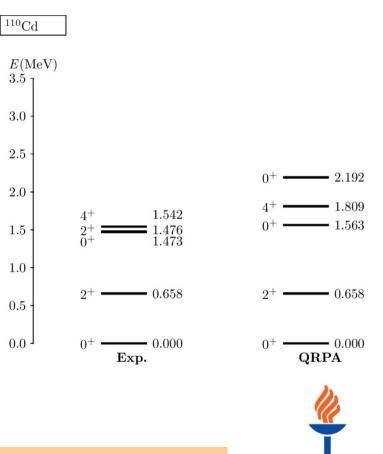
Theories used in the work



Bardeen-Cooper-Schrieffer theory (BCS)

- Is used to describe the quasiparticle energies of the nuclei
 - H.O. single-particle energies with Woods-Saxon potential
 - No spin-isospin correlation

BCS


• Quasiparticle matrix element $M_{QP}(M4) = M_{sp}(M4)P_{ij}$,

where $P_{ij} = u_i u_j + v_i v_j$.

Quasiparticle Random Phase Approximation (QRPA)

- Describes the excited states of spherical, even-even, open-shell nuclei as twoquasiparticle configurations, QRPA phonons
- Takes into account the spin-isospin correlation

IYVÄSKYLÄN YLIOPISTO

UNIVERSITY OF IYVÄSKYLÄ

Natural parity phonon: Phonon with parity $\pi = (-1)^{J} (2^{+}, 3^{-}, ...)$ Unnatural parity phonon: Phonon with parity $\pi = (-1)^{J+1} (2^{-}, 3^{+}, ...)$

Microscopic Quasiparticle-Phonon Model (MQPM)

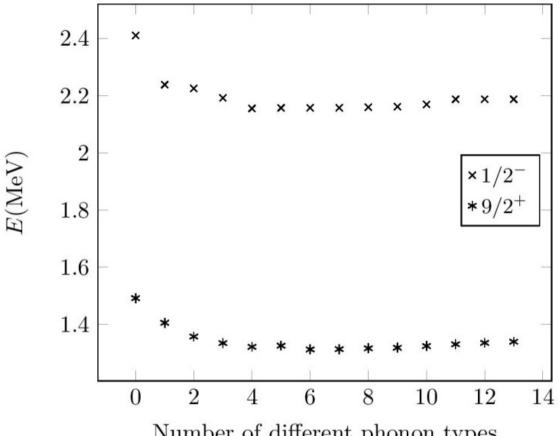
- Couples the QRPA phonons with the BCS quasiparticles
- Solves the three different parts of the microscopic Hamiltonian: The particle, The phonon, and the particle-phonon parts
- Schematically the MQPM matrix element can be written as

$$M_{MQPM} = g_s^{(p)} M_{sp} + g_l^{(p)} M_{lp} + g_s^{(n)} M_{sn} + g_l^{(n)} M_{ln}$$

Methods

- Woods-Saxon single-particle basis
- BCS quasiparticles
 - Pairing factors of protons and neutrons were adjusted to the experimental pairing gaps
- QRPA phonons
 - Particle-hole factor was adjusted to the experimental energies if possible
 - Particle-particle factor was kept as $g_{pp} = 1.0$

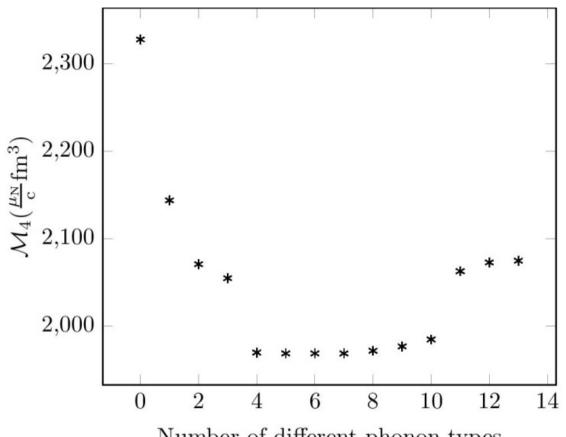
Methods


MQPM couples the quasiparticles and phonons

- Odd-state = even-even –state + p/n quasiparticle (For example: $^{111}_{49}$ In = $^{110}_{48}$ Cd \otimes p)
- First the natural and then the unnatural parity phonons were added
- Phonons were added until the convergence was reached

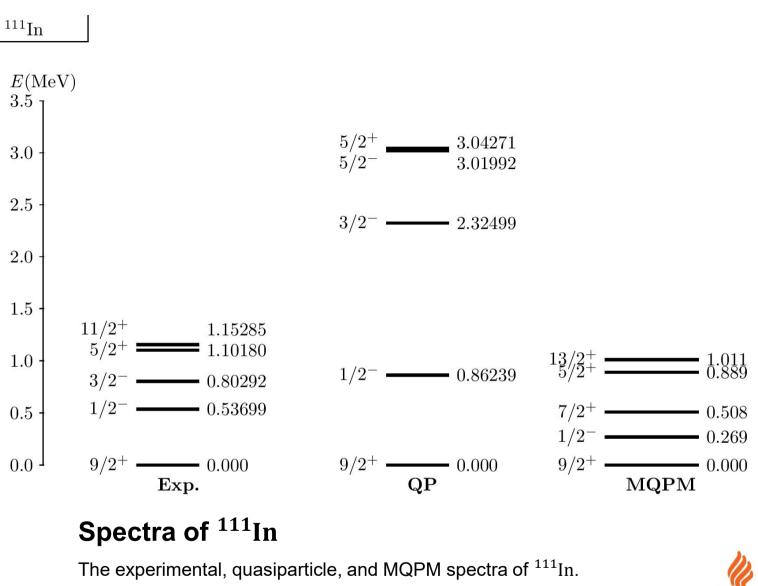
Convergence of the MQPM energies

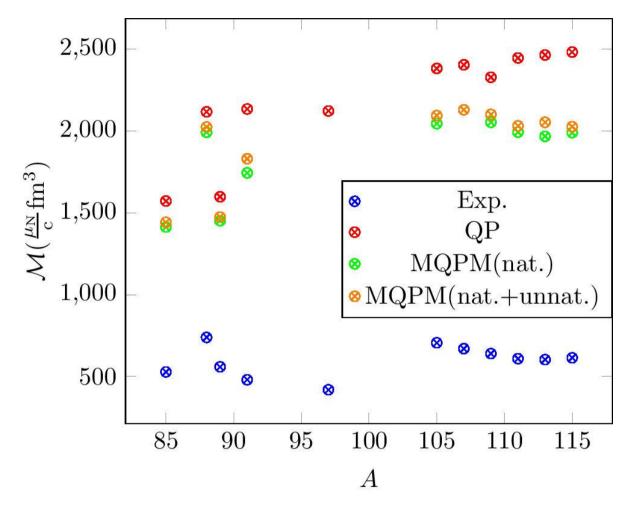
The MQPM energies for 111In as a function of the added phonon types. The phonons were added in the order 2+, 3-, 4+, 5-, 6+, 7-, 0+,1+, 2-, 3+, 4-, 5+ and 6-. The cut-off energy was 15 MeV.

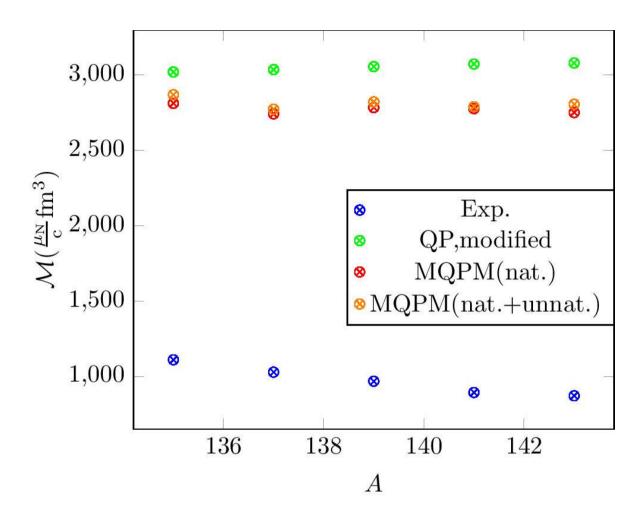


Number of different phonon types

Convergence of the MQPM NMEs

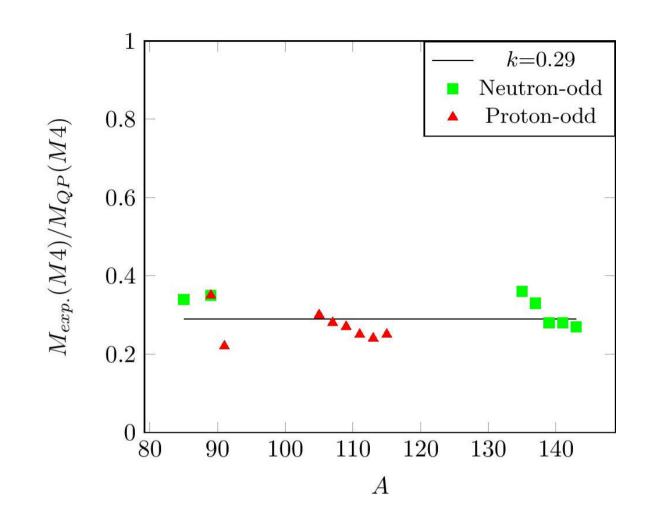

The MQPM NME for ¹¹¹In as a function of the added phonon types. The phonons were added in the order 2+, 3-, 4+, 5-, 6+, 7-, 0+, 1+, 2-, 3+, 4-, 5+ and 6-. The cut-off energy was 15 MeV.


Number of different phonon types



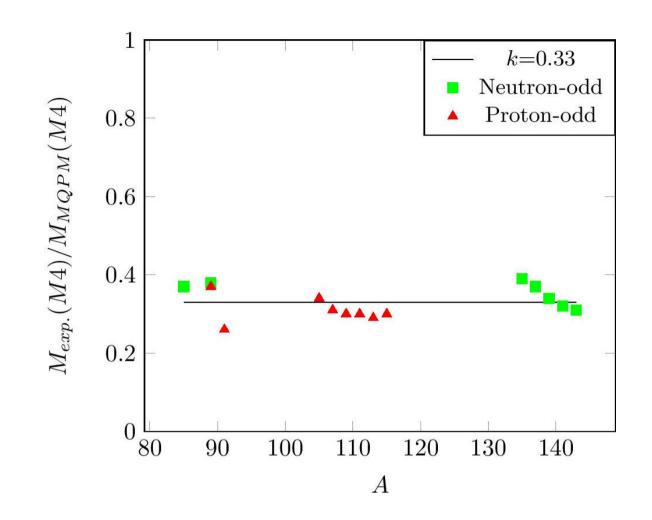
Results for the region A=85-115

The experimental, quasiparticle and MQPM NMEs of the nuclei in the region A=85-115. The MQPM NMEs with only natural parity and both natural and unnatural parity phonons are presented separately.



Results for the region A=135-143

The experimental, quasiparticle and MQPM NMEs of the nuclei in the region A=135-43. The quasiparticle NMEs are calculated with the modified single-particle bases. The MQPM NMEs with only natural parity and both natural and unnatural parity phonons are presented separately.



Reduction coefficient for the QP NMEs

The reduction coefficients defined by $k = M_{exp.}(M4)/M_{QP}(M4)$ for the nuclei in the regions A=85-115 and A=135-143. The green squares refer to the neutron-odd and red triangles to the proton-odd nuclei. The average reduction coefficient k = 0.29 is presented as a solid line.

Reduction coefficient for the MQPM NMEs

The reduction coefficients defined by $k = M_{exp.}(M4)/M_{MQPM}(M4)$ for the nuclei in the regions A=85-115 and A=135-143. The green squares refer to the neutron-odd and red triangles to the proton-odd nuclei. The average reduction coefficient k = 0.33 is presented as a solid line.

Results

 $\begin{cases} M_{exp.}(M4)/M_{QP}(M4) = 0.29 \\ M_{exp.}(M4)/M_{MQPM}(M4) = 0.33 \end{cases}$

In earlier studies

$$-\begin{cases} M_{exp.}(SD2)/M_{QP}(SD2) = 0.2\\ M_{exp.}(SD2)/M_{pnQRPA}(SD2) = 0.5_{1} \end{cases}$$

 $-\begin{cases} M_{exp.}(GT1)/M_{QP}(GT1) = 0.23\\ M_{exp.}(GT1)/M_{pnQRPA}(GT1) = 0.6_2 \end{cases}$

How about the effect of the gyromagnetic ratios?

IYVÄSKYLÄN YLIOPISTO

UNIVERSITY OF JYVÄSKYLÄ

¹ H. Ejiri, N. Soukouti and J.Suhonen. *Phys.Lett.B.* 729:27-32, 2014 ² H. Ejiri and J. Suhonen. *J. Phys. G, Nucl. Part. Physics.* 42:055201, 2015

Effect of gyromagnetic ratios

 $M_{MQPM} = g_s^{(p)} M_{sp} + g_l^{(p)} M_{lp} + g_s^{(n)} M_{sn} + g_l^{(n)} M_{ln}$

	$M_{MQPM}(M4)(^{89}\mathrm{Zr})$	$M_{MQPM}(M4)(^{109}\mathrm{In})$
Bare g factors	1474	2101
$g_l^{(p)} = 1.5, g_l^{(n)} = -0.5$	1388	2007
$g_s^{(p)} = 4.586$	1473	1690
$g_s^{(p)} = 6.586$	1475	2512
$g_s^{(n)} = -4.826$	1857	2098
$g_s^{(n)} = -2.826$	1091	2104
Experimental values	559	640

Bare g factors: $g_l^{(p)} = 1$, $g_s^{(p)} = 5.586$, $g_l^{(n)} = 0$, $g_s^{(n)} = -3.826$

Discussion

- Experimental NMEs reduced a lot in comparison with the theoretical ones
- Quasiparticle NMEs reduction coefficient of the same order that in the earlier studies
- MQPM NMEs not as close to the experimental ones as pnQRPA NMEs in the earlier studies

Discussion

- Reduction of the experimental NMEs partly due to the spin-isospin correlations but also other nuclear-medium effects
- Changing the spin g factor affected the NMEs a little
 - Effective spin g factor?

What's next?

- Analysis of the strength and energy of isovector spin-dipole and spin-quadrupole resonances of DBD nuclei
 - Study of the key multipoles
 - $J^{\pi} = 0^{-}, 1^{+}, 1^{-}, 2^{+}, 2^{-}$ and 3^{+} in the intermediate odd-odd nuclei for $0\nu\beta\beta$ -decay triplets

IYVÄSKYLÄN YLIOPISTO

UNIVERSITY OF JYVÄSKYLÄ

- In the earlier work ³, the states were studied for closed-shell nuclei by the pnRPA model
- In the ongoing work, the states are studied for open-shell nuclei by the pnQRPA model

³ N. Auerbach and A. Klein, Structure of isovector spin excitations in nuclei. Phys. Rev. C 30 (1984) 1032.

Thank you!

