International Workshop on Neutrino Nuclear Responses for Double Beta Decays and Astro-Neutrino Interactions (NNR16) RCNP, Osaka, 30 September, 2016

Reaction Mechanism in the stellar ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction

M Katsuma

Osaka City University

Nucleosynthesis of elements

Mass Number

difficulty due to the Coulomb barrier.

Coulomb barrier

- The cross sections are very small due to the Coulomb barrier.
- Cross section at $E_{c.m.}$ = 300 keV (Helium burning temperature)
 - ★ The lowest energy of the experimental work is approximately 1.2 MeV.
 - ★ The cross section is inferred from the indirect measurements.
 - ★ The extrapolation to low energies is made by the theoretical model.

Reaction Mechanism

The 1⁻₁(E_x= 7.12 MeV) and 1⁻₂ (E_x= 9.59 MeV) states play an important role in the extrapolation of the low-energy cross section.

- Complicated process of the compound nucleus
- The strong interference between two 1⁻ states.
- **E1 transition** is predominant in the strong coupling mechanism.
- At present, this interference has been believed to describe the cross section at E_{c.m.}= 300 keV.

Reaction Mechanism (this work)

- **E2 transition** plays the important role in the extrapolation.
- This is caused by the 2+1 state.
 (E_x= 6.92 MeV)
- α +12C molecular (cluster) state
- The 1-2 state is different from the subthreshold 1-1 state.
- Weak coupling is expected between two 1- states.
- E1 is negligible, compared with the contribution from the α +¹²C molecular state.

Present report

Theoretical result based on the **potential model**, describing the fundamental process of the nuclear reaction in the weak coupling.

• α +12C cluster states in 16O

- Entrance channel of ${}^{12}C(\alpha,\gamma){}^{16}O$
- Molecular resonances and rotational bands in ¹⁶O *

¹²C(α,γ)¹⁶O with the potential model

- E2 transition dominates the low-energy cross section.
- 12**C** Discuss the weak coupling, the reduced E1 component, \star and the derived reaction rates.
- Recent experimental data of γ -ray angular distribution \mathbf{x}

Photo-disintegration of ¹⁶O

- The photo-disintegration is expected to provide \star more accurate experimental information.
- Inverse reaction of $12C(\alpha,\gamma)^{16}O$ ☆

 $\sigma_{\gamma\alpha} > \sigma_{\alpha\gamma}$

16**r**

θ

 $16 \cap$

α+12C cluster states in 16O

Potential scattering of α -particle

Excitation functions of α +12C elastic scattering

• Potential scattering : $\alpha + 12C$ continuum states in 16O

Exp.: R. Plaga et. al., NPA465, 291 (1987)

Phase shifts of α +12C elastic scattering

• $\alpha + 12$ C molecular resonances

 \blacktriangleright δ = 90 deg.

Exp.: R. Plaga et. al., NPA465, 291 (1987)

180

(a)

- The potential used in the present study does not have the absorption, and it is transparent in the entire region.
- The α +12C system can be treated in the weak coupling.

Rotational Bands in ¹⁶O

- The used potential makes the sequence of the rotational excitation mode.
 - ★ N=8 (even), N=9 (odd)
- Optical potentials for α -particle elastic scattering at high energies.
 - α -particle can go round in circles at \mathbf{x} low energies.
 - \star α -particle tends to go straight as the energy increases.

Trajectory of the incident α -particle.

M.R.

Refractive scattering (Nuclear rainbow)

• Elastic scattering at high energies

- Backward angles: Dark region
- determine the strength of the nuclear potential at low energies
- Volume integrals of the potential

 $J_R = \frac{4\pi}{A_p A_t} \int |V(r)| r^2 dr,$

Right: D.T. Khoa, PRC **63**, 034007 (2001) Left: M. Katsuma, J Phys. G40, 025107 (2013)

Summary: $\alpha + 12C$ cluster states in 16O

- Good wavefunction of the α+12C cluster states in ¹⁶O through the study of elastic scattering.
- The resulting α+12C molecular states satisfy the semi-classical limit of the quantum system.
- The weak coupling can be expected from non-absorption.
- Large α -particle width
- The subthreshold 1-1 state is not a member of the molecular bands.

Potential model

Radiative capture cross sections

$$\sigma \propto |\langle \varphi_f | e M_{\lambda}^{E} | \varphi_i \rangle|^2 \qquad \text{Input: (1) Potentials}$$
(2) Effective of

Initial waves

- Generated from the potential describing elastic scattering.
- Bound states
 - \triangleright α +12C molecular states (0⁺ and 2⁺ states)
 - * The potential is the same as that for the scattering states.
 - Shell model states (g.s., 3⁻ and 1⁻ states)
 - ★ Separation energy method:

The potential strength is adjusted to reproduce the α -particle separation energy. This method gives appropriate wavefunction in the peripheral region.

Effective charges

obtained phenomenologically.

(2) Effective charge

γ -ray angular distributions of $^{12}C(\alpha,\gamma_0)^{16}O$

Potential model

$$\frac{d\sigma}{d\Omega_{\gamma}}(\theta_{\gamma}, E_{\text{c.m.}}) = \sum_{j=0}^{4} c_{j} P_{j}(\cos \theta_{\gamma}),$$
$$c_{j} = \sum_{\lambda\lambda'ff'ii'} d_{j} \frac{k_{\gamma}^{\lambda+\lambda'+1}}{\hbar v} \langle \phi_{f} || M_{\lambda}^{E} || \phi_{i} \rangle \langle \phi_{f'} || M_{\lambda'}^{E} || \phi_{i'} \rangle^{*}.$$

- The reproduction of the data looks good.
- **p-wave** at 2.267 MeV.
- d-wave becomes important at lower energies.

• Cross sections

$$\sigma(E_{\text{c.m.}}) = 4\pi c_0$$

= $\sigma_{E1}(E_{\text{c.m.}}) + \sigma_{E2}(E_{\text{c.m.}})$

Exp.: M. Assunção, *et. al.*, PRC73, 055801 (2006) R. Kunz, *et. al.*, PRL86,3244 (2001)

Astrophysical S-factors – Cross sections

$$S(E_{\text{c.m.}}) = E_{\text{c.m.}} \exp(2\pi \eta) \sigma(E_{\text{c.m.}}),$$
$$\eta = Z_1 Z_2 e^2 / \hbar v$$

- Strong enhancement of E2.
 - Two molecular states have the large width in the electric transition.
 - ★ 2⁺ state below the threshold
 - ★ 1⁻ resonance at 2.4 MeV
 - The theoretical E1 value slightly deviate from the experimental one.
 - The separation of E1 and E2 is performed by the analysis of the γ-ray angular distribution, that looks good in the present model.
 - Exp.: M. Assunção, *et. al.*, PRC73, 055801 (2006) R. Kunz, *et. al.*, PRL86,3244 (2001)

Interference between two molecular states

- The experimental S-factor is reproduced by the potential model with the reduced E1 S-factor.
- The angular distribution appears to be made from the interference between the 1-2 and 2+1 molecular states.
 - ★ d-wave: 2+1
 - ★ p-wave: 1⁻2

- The weak coupling between 1-1 and 1-2 seems to be advocated.
 - The E1 contribution from the subthreshold 1⁻ state is not necessarily required.
- Exp.: M. Assunção, *et. al.*, PRC73, 055801 (2006) R. Kunz, *et. al.*, PRL86,3244 (2001)

Reduced E1 S-factor

R-matrix

- The compatible calculation of E1 transition is obtained from R-matrix.
- α-particle width and ANC from the potential model.
- Channel radius: 4.5 fm
- E1 is not enhanced at low energies.
 - β-delayed α-spectrum of ¹⁶N is reproduced in the same quality of fits. (p-wave)

Cascade transitions

Not important below $E_{c.m.} = 1 \text{ MeV}$ ($\approx 18 \text{ keVb}$ at $E_{c.m.} = 300 \text{ keV}$)

A. Redder, et. al., NPA462, 385 (1987)

(S-factors are in unit of keV b.)

	This work	KU02	NACRE	BU96
E1	3	76±20	79±21	79±21
E2	150 ⁺⁴¹ ₋₁₇	85±30	120 ± 60	70±70
Cascade	18±4.5	4±4	-	16±16
Total	171 ⁺⁴⁶ -22	165±54	199±81	165±107

- Total S-factor from the potential model is consistent with the previous studies.
- The present results of E1 and E2 are different from the previous studies.
- The difference originates from the assumed reaction mechanism in the model.

 $\begin{bmatrix} NACRE \end{bmatrix} (Brussels, Belgium) \\ Reaction rate compilation \\ \\ \begin{bmatrix} KU02 \end{bmatrix} & (Stuttgart, Germany) \\ \gamma-ray angular distributions \\ measurements. \\ \\ \\ \begin{bmatrix} BU96 \end{bmatrix} & (TRIUMF, Canada) \\ \beta-delayed & -spectrum of ^{16}N \\ \end{bmatrix}$

Comparison of the reaction rates

• The reaction rates (KA12)

[KA12] M. Katsuma, Astrophys. J. 745, 192 (2012)

- Reaction rates from the potential model
- Uncertainties of the rates from the variation of the model parameters

The derived rates are consistent with the published rates. ($T_9 < 1$)

The total S-factor is comparable.

Additional resonant contribution

To examine the effect of other resonances, the Breit-Wigner type of resonances is appended to the potential model.

The additional contribution in the reaction rates is found to be small. (< 4%)

 10^{4}

R. Kunz, et. al., PRL86,3244 (2001);

G. Roters, et. al., EPJA6, 451 (1999)

Photo-disintegration of ¹⁶O

Potential model

• $^{16}O(\gamma,\alpha)^{12}C$ cross sections

$$\sigma_{\gamma\alpha} = \frac{k\alpha^2}{2 k\gamma^2} \sigma_{\alpha\gamma}$$

- The wavenumber k_{γ} of photon is smaller than k_{α} of α -particle.
- The cross section of the photodisintegration is expected to be larger than that of ¹²C(α,γ)¹⁶O.

In advance of the experiments, the photoelectric cross section is predicted from the available result of ¹²C(α,γ)¹⁶O.

Statistical equilibrium of the capture reaction and photo-disintegration

 $\gamma + {}^{16}O \quad \checkmark \quad \alpha + {}^{12}C$

Photodisintegration of ${}^{16}O - {}^{16}O(\gamma, \alpha){}^{12}C$

• E2 excitation dominates the reaction in the vicinity of the threshold.

Photodisintegration of $^{16}O - ^{16}O(\gamma, \alpha)^{12}C$

\bullet α -particle angular distribution

- The interference between two α+12C molecular states is predicted.
- The interference makes the asymmetric angular distribution.

• E2/E1 ratio from the potential model

Eγ (MeV)	8.0	8.5	9.0	9.5
E2/E1	9.0	2.3	0.42	0.03

Summary

- The ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction has been described with the potential model.
 - ★ The cross section at $E_{c.m.}$ = 300 keV is confirmed to be enhanced by E2 transition, the tail of the subthreshold 2⁺ state.
 - The γ-ray angular distribution appears to be made from the interference between **two** α +¹²C molecular states.
 - ★ The weak coupling feature apparently works in the α +1²C system.
 - * The reaction rates are given by the direct capture component below the barrier.
 - ✓ The total S-factor at 300 keV and reaction rates are consistent with the previous studies, so the astrophysical impact of the present work may be small.
 - ✓ The cascade transitions through the excited states are not so important.
 - ✓ The other resonances are negligible.
- ▶ The **photodisintegration of** ¹⁶**O** is also dominated by **E2** excitation.
 - ★ The E2/E1 ratio and the reaction mechanism will be determined more accurately by the future experiments.