Phenomenological description of Standard and non-Standard neutrino-nucleus Interactions

Theocharis Kosmas

Theoretical Physics Section, University of Ioannina, Greece

Neutrino Nuclear Responses for Double Beta Decays and Neutrino Astrophysics (NNR16) Osaka, Japan: September 29-30, 2016

TECHNOLOGICAL EDUCATIONAL INSTITUTE OF WESTERN MACEDONIA

- Introduction
- Standard and non-standard NC ν -nucleus processes

•
$$\nu_{\alpha} + (A, Z) \rightarrow \nu_{\alpha} + (A, Z)^{*}$$

• $\nu_{\alpha} + (A, Z) \rightarrow \nu_{\beta} + (A, Z)^{*}$

- Description of the formalism
 - SM and exotic Lagrangians
 - SM and exotic nuclear cross sections
- Constraints on the NSI parameters
 - Vector ν-nucleus interactions
 - Tensorial *v*-nucleus interactions
 - Transition neutrino magnetic moment
- Concluding remarks

(Standard Model ν -nucleus reactions) (Non-Standard ν -nucleus reactions)

SM and Lepton Flavour Violating neutral-current processes

SM ν -nucleus reaction

$$u_{lpha} + (A, Z) \rightarrow \nu_{lpha} + (A, Z)$$

- Well-studied process theoretically.
- No events have been measured yet
- Very high experimental sensitivity is required.

LFV NSI ν -nucleus reaction

$$u_{\alpha} + (A, Z) \rightarrow \nu_{\beta} + (A, Z), \quad \alpha \neq \beta = (e, \mu, \tau)$$

- Not allowed in the SM due to violation of the lepton number
- Excellent probe to search for new physics

Feynman diagrams contributing to LFV

- (a) SM Z-exchange neutral current ν -nucleus reactions
- (b) non-standard Z-exchange ν -nucleus reactions
- (c) Z-exchange and photon-exchange $\mu^- \rightarrow e^-$ in the presence of a nucleus (muon-to-electron conversion)
- T.S. Kosmas and J.D. Vergados, Phys. Rep. **264** 251 (1996) F. Deppisch, T.S. Kosmas and J.W.F. Valle, Nucl. Phys. **B 752** 80 (2006)
- D.K. Papoulias and T.S. Kosmas, Phys. Lett. B 728 482 (2014)

Reactor neutrinos

Nuclear reactors have been used as intense ν_e sources in many experiments. In the fission of ^{235}U , ^{239}Pu , and ^{238}U , neutron rich nuclei are produced and $\tilde{\nu}_e$ anti-neutrinos are subsequently emitted via β decay.

Nuclear reactors, are sources of $\tilde{\nu}_e$ These antineutrinos have an energy spectrum peaked at very low energies ($\sim 0.3 \text{ MeV}$) and extending up to $\sim 10 \text{ MeV}$, characteristic of the β^- decay of the fission products.

The slow pion and muon decay neutrinos have energy: $\varepsilon_{\nu} \preceq 52.8 \text{MeV}$

 $\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}(\widetilde{\nu_{\mu}}) \qquad \qquad \mu^{+} \to e$ $\pi^{\pm} \to e^{\pm} + \nu_{e}(\widetilde{\nu_{e}}) \qquad \qquad \mu^{-} \to e$

$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \tilde{\nu}_{\mu}$$

$$\mu^{-} \rightarrow e^{-} + \tilde{\nu}_{e} + \nu_{\mu}$$

$$f_{\nu_{e}}(\varepsilon_{\nu_{e}}) = 96\varepsilon_{\nu_{e}}^{2} m_{\mu}^{-4} (m_{\mu} - 2\varepsilon_{\nu_{e}})$$

$$f_{\tilde{\nu}_{\mu}}(\varepsilon_{\tilde{\nu}_{\mu}}) = 16\varepsilon_{\tilde{\nu}_{\mu}}^{2} m_{\mu}^{-4} (3m_{\mu} - 4\varepsilon_{\tilde{\nu}_{\mu}})$$

The f_{ν_e} , $f_{\tilde{\nu}_{\mu}}$ were used in the parametrization of SN- ν (non realistic in low energies ε_{ν})

Supernova neutrinos

Mean Energies:
$$\langle \varepsilon_{\nu_e} \rangle < \langle \varepsilon_{\tilde{\nu}_e} \rangle < \langle \varepsilon_{\nu_x} \rangle$$

• Elementary charged current (CC) neutrino reactions

$$\nu_e + n \longrightarrow e^- + p \qquad \tilde{\nu}_e + p \longrightarrow e^+ + n$$

• Elementary neutral current (NC) neutrino reactions

$$u(\widetilde{\nu}) + e^{\pm} \longrightarrow \nu(\widetilde{\nu}) + e^{\pm} \qquad \nu(\widetilde{\nu}) + (A, Z) \longrightarrow \nu(\widetilde{\nu}) + (A, Z)$$

Geoneutrinos

Geo-neutrinos are mainly ($\tilde{\nu}_e$) generated upon transmutation of β -decay nuclei, accompanied by emission of an electron (e^-) and release of decay-energy (Q_β)

$$(A,Z) \to (A,Z+1) + e^- + \widetilde{\nu}_e + Q_\beta , \qquad (1)$$

- The abundant radioactive isotopes that are in the present Earth are classified into three groups: (i) isotopes in the ²³⁸U decay series, (ii) isotopes in ²³²Th decay series, and ⁴⁰K isotope.
- The most recent measurements from KamLAND [?] and Borexino [?] are reaching the precision where they can start to constrain Earth models.

Geoneutrinos

- Spectra of the U-Series, Th-Series and ${}^{40}K$ Geo-Neutrinos. Neutrinos from ${}^{40}K$ electron capture are also shown.
- neutrino energy distribution $\tilde{\nu}_e$ coming from 82 beta decays in the U series and 70 beta decays in the Th series are included.
- Antineutrinos are generated by β -decays of all intermediate radioactive isotopes

Neutrinos from stopped-pion muon beam experiments

The new COHERENT experiment: at the Spallation Neutron Source (SNS), Oak Ridge has excellent capabilities to measure ν -nucleus coherent scattering events

D.Akimov et al. (COHERENT collaboration), arXiv:1310.0125

- very intense fluxes about $\sim 10^7 \ \nu/s$
- energies up to \sim 60 MeV (important nuclear effects)

Proposed nuclear detectors: 456kg Liquid Ar and 491kg Liquid Ne F.T. Avignone and Y.V. Efremenko, J. Phys. G29, (2003) 2615

K.Scholberg, et. al. arXiv:0910.1989 [hep-ex]

Theocharis Kosmas (Ioannina University)

Within the SM at the 4-fermion approximation (energies $\ll M_Z$) the Lagrangian takes the form

$$\mathcal{L}_{\rm SM} = -2\sqrt{2}G_F \sum_{\substack{f=u,d\\\alpha=e,\mu,\tau}} g_P^f \left[\bar{\nu}_\alpha \gamma_\rho L \nu_\alpha \right] \left[\bar{f} \gamma^\rho P f \right],$$

g^f_P are the P-handed SM couplings of f-quarks (f = u, d) to the Z-boson in terms of the Weinberg mixing angle θ_W.

•
$$g_L^u = \frac{1}{2} - \frac{2}{3} \sin^2 \theta_W$$
 and $g_R^u = -\frac{2}{3} \sin^2 \theta_W$
• $g_L^d = -\frac{1}{2} + \frac{1}{3} \sin^2 \theta_W$ and $g_R^d = \frac{1}{3} \sin^2 \theta_W$

- S. Davidson et. al., JHEP 03 011 (2003)
- J. Barranco, O.G. Miranda and T.I. Rashba, JHEP 0512 021 (2005)

NSI Phenomenological description

The non-standard Lagrangian takes the form

$$\mathcal{L}_{\text{NSI}} = -2\sqrt{2}G_{\text{F}} \sum_{\substack{f=u,d\\\alpha,\beta=e,\mu,\tau}} \epsilon_{\alpha\beta}^{f\text{P}} \left[\bar{\nu}_{\alpha}\gamma_{\rho}L\nu_{\beta} \right] \left[\bar{f}\gamma^{\rho}Pf \right]$$

J. Barranco, O.G. Miranda, C.A. Moura and J.W.F. Valle, Phys. Rev. D 73 (2006) 113001 O.G. Miranda, M.A. Tortola and J.W.F. Valle, JHEP 0610 (2006) 008.

- flavour preserving non-universal (NU) terms proportional to $\epsilon_{\alpha\alpha}^{fP}$.
- flavour-changing (FC) terms proportional to $\epsilon_{\alpha\beta}^{fP}$, $\alpha \neq \beta$.

These couplings are taken with respect to the strength of the Fermi coupling constant G_{F} .

- polar-vector couplings: $\epsilon_{\alpha\beta}^{IV} = \epsilon_{\alpha\beta}^{fL} + \epsilon_{\alpha\beta}^{fR}$
- axial-vector couplings: $\epsilon_{\alpha\beta}^{fA} = \epsilon_{\alpha\beta}^{fL} \epsilon_{\alpha\beta}^{fR}$
- S. Davidson et. al., JHEP **03** 011 (2003) J. Barranco, O.G. Miranda and T.I. Rashba, JHEP **0512** 021 (2005)
- K. Scholberg, Phys. Rev. D 73 033005 (2006)

SM Cross sections and Nuclear Transition Matrix Elements

At nuclear level the coherent SM dif. cross-section with respect to the scattering angle θ becomes

$$rac{d\sigma_{ ext{SM},
u_lpha}}{d\cos heta} = rac{{{\mathcal{G}_F^2}}}{{2\pi }}{{\mathcal{E}_
u^2}\left({1 + \cos heta }
ight){\left| {\left\langle {gs}
ight|}
ight|{\mathcal{G}_{V,
u_lpha}^{ ext{SM}}(q)}
ight|{\left| {gs}
ight
angle}
ight|^2}$$

D.Z. Freedman, Phys. Rev. D 9 (1974) 1389 A. Drukier, L. Stodolsky, Phys. Rev. D 30 (1984) 2295

C.J. Horowitz, K.J. Coakley, D.N. McKinsey, Phys. Rev. D 68 (2003) 023005.

- E_{ν} : incident neutrino energy
- $q^2 = 4E_{\nu}^2 \sin^2 \frac{\theta}{2}$: 3-momentum transfer
- $|gs
 angle=|J^{\pi}
 angle\equiv|0^{+}
 angle$: the nuclear ground state (for even-even nuclei)
- $g_V^{p(n)}$: polar-vector coupling of proton (neutron) to the Z boson

The SM nuclear matrix element is given in terms of the electromagnetic form factors $F_{Z(N)}$ (CVC theory)

$$\left|\mathcal{M}_{V,\nu_{\alpha}}^{\mathrm{SM}}\right|^{2} \equiv \left|\langle gs||\hat{\mathcal{M}}_{0}||gs\rangle\right|^{2} = \left[g_{V}^{p}ZF_{Z}(q^{2}) + g_{V}^{n}NF_{N}(q^{2})\right]^{2}$$

D.K. Papoulias and T.S. Kosmas, Phys. Lett. B 728 482 (2014)

Theocharis Kosmas (Ioannina University)

The coherent differential cross section with respect to the scattering angle θ for NSI ν -nucleus processes is written as

$$\frac{d\sigma_{\text{NSI},\nu_{\alpha}}}{d\cos\theta} = \frac{G_F^2}{2\pi} E_{\nu}^2 \left(1 + \cos\theta\right) \left| \langle gs || G_{V,\nu_{\alpha}}^{\text{NSI}}(q) || gs \rangle \right|^2, \tag{2}$$

 $(\alpha = e, \mu, \tau, \text{ denotes the flavour of incident neutrinos})$ The NSI nuclear matrix element reads

$$\begin{split} \left| \mathcal{M}_{V,\nu_{\alpha}}^{\mathrm{NSI}} \right|^{2} &\equiv \left| \langle gs || G_{V,\nu_{\alpha}}^{\mathrm{NSI}}(q) || gs \rangle \right|^{2} = \\ \left[\left(2\epsilon_{\alpha\alpha}^{uV} + \epsilon_{\alpha\alpha}^{dV} \right) ZF_{Z}(q^{2}) + \left(\epsilon_{\alpha\alpha}^{uV} + 2\epsilon_{\alpha\alpha}^{dV} \right) NF_{N}(q^{2}) \right]^{2} \\ &+ \sum_{\beta \neq \alpha} \left[\left(2\epsilon_{\alpha\beta}^{uV} + \epsilon_{\alpha\beta}^{dV} \right) ZF_{Z}(q^{2}) + \left(\epsilon_{\alpha\beta}^{uV} + 2\epsilon_{\alpha\beta}^{dV} \right) NF_{N}(q^{2}) \right]^{2} \end{split}$$

D.K. Papoulias and T.S. Kosmas, Phys. Lett. B 728 482 (2014)

From experimental physics perspectives it is important to compute the dif. cross section with respect to the nuclear recoil energy T_N

$$\frac{d\sigma_{\mathrm{NSI},\nu_{\alpha}}}{dT_{N}} = \frac{G_{F}^{2}M}{\pi} \left(1 - \frac{MT_{N}}{2E_{\nu}^{2}}\right) \left|\langle gs || G_{V,\nu_{\alpha}}^{\mathrm{NSI}}(q) || gs \rangle\right|^{2}$$

• 3-momentum transfer
$$q^2 = 2MT_N$$

M is the nuclear mass.

•
$$T_N^{max} = \frac{2E_\nu^2}{M+2E_\nu}$$

Experiments will measure nuclear recoils

- P. Vogel and J.Engel, Phys.Rev. D 39 3378 (1989) J. Barranco, O.G. Miranda and T.I. Rashba, JHEP 0512 021 (2005) K. Scholberg, Phys. Rev. D 73 033005 (2006)
- D.K. Papoulias and T.S. Kosmas, Phys. Lett. B 728 482 (2014)

Convoluted Cross section calculations

Assuming a typical supernova at d = 10 kpc we may compute the cross section signal to be recorded on the ⁴⁸Ti detector

• Supernova neutrino flux

$$\Phi(E_{\nu}) = \sum_{\alpha} \frac{N_{\nu_{lpha}}}{4\pi d^2} \eta_{\nu_{lpha}}^{\mathrm{SN}}(E_{\nu})$$

• Maxwell-Boltzmann distributions

$$\eta_{\nu_{\alpha}}^{\mathrm{SN}}(E_{\nu}) = \frac{E_{\nu}^2}{2T_{\nu_{\alpha}}^3} e^{-E_{\nu}/T_{\nu_{\alpha}}}$$

convoluted cross sections

$$\sigma_{\lambda,\nu_{\alpha}}^{\text{sign}}(\textit{E}_{\nu}) = \sigma_{\lambda,\nu_{\alpha}}(\textit{E}_{\nu}) \, \eta_{\nu_{\alpha}}^{\text{SN}}(\textit{E}_{\nu})$$

- C.J. Horowitz, K.J. Coakley, D.N. McKinsey, Phys. Rev.
- D 68 (2003) 023005
- M. Biassoni, C. Martinez, Astropart. Phys. 36 (2012) 151.

Flux averaged cross section calculations

In supernova neutrino simulations, another useful quantity is the flux averaged cross section

$$\langle \sigma_{\lambda,
u_{lpha}}
angle = \int \sigma_{\lambda,
u_{lpha}}(E_{
u}) \, \eta^{\mathrm{SN}}_{
u_{lpha}}(E_{
u}) \, dE_{
u}$$

V. Tsakstara and T.S. Kosmas, Phys. Rev. C 83 (2011) 054612

ν_{α}	(A,Z)	$\langle \sigma_{ m tot} angle$	$\langle \sigma_{\rm SM} \rangle$	$\langle \sigma_{ m NU} angle$	$\langle \sigma_{ m FP} angle$	$\langle \sigma_{\nu_{lpha} ightarrow \nu_{e}} angle$	$\langle \sigma_{\nu_{lpha} ightarrow \nu_{\mu}} angle$	$\langle \sigma_{\nu_{\alpha} \to \nu_{\tau}} \rangle$
ve	⁴⁸ Ti ²⁷ Al	5.32 1.57	5.15 1.50	1.20×10^{-2} 3.83×10^{-3}	4.66 1.35	-	6.07×10^{-5} 1.95×10^{-5}	6.50×10^{-1} 2.09×10^{-1}
v_{μ}	⁴⁸ Ti ²⁷ Al	19.6 6.07	15.2 4.61	$\begin{array}{c} 1.93 \times 10^{-2} \\ 6.42 \times 10^{-3} \end{array}$	14.2 4.27	$\begin{array}{c} 1.80 \times 10^{-4} \\ 6.00 \times 10^{-5} \end{array}$	-	5.36 1.78

Flux averaged cross sections (in $10^{-40} {\rm cm}^2$) for various SN ν -spectra parametrized by Maxwell-Boltzmann distributions

D.K. Papoulias and T.S. Kosmas, Phys. Lett. B 728 482 (2014)

Expected Event Rates

Differential Yield in events assuming one tone of $^{48}\mathrm{Ti}$ detector material as function of the nuclear recoil energy

$$Y_{\lambda,\nu_{\alpha}}(T_{N}) = N_{t} \int \Phi_{\nu_{\alpha}} dE_{\nu}$$
$$\times \int \frac{d\sigma_{\lambda,\nu_{\alpha}}}{d\cos\theta} \delta\left(T_{N} - \frac{q^{2}}{2M}\right) d\cos\theta$$

N_t number of target nuclei

see also

C.J. Horowitz, K.J. Coakley, D.N. McKinsey, Phys. Rev. D 68 (2003) 023005

M. Biassoni, C. Martinez, Astropart. Phys. 36 (2012) 151.

Limits from $\mu ightarrow e$ conversion

The $\nu_{\mu} \leftrightarrow \nu_{e}$ transition the NSI parameters are related with the experimental upper limits of $\mu^{-} \rightarrow e^{-}$ conversion as

$$\epsilon_{\mu e}^{fP} = C^{-1} \sqrt{R_{\mu e}^{(A,Z)}}$$

S. Davidson et. al., JHEP 03 011 (2003)

new upper limits expected to be set by the corresponding experiments

Parameter	COMET	Mu2e	Project-X	PRIME
$\epsilon_{\mu e}^{fV} imes 10^{-6}$	3.70	2.87	0.52	0.37
$R_{\nu_{\mu}\leftrightarrow\nu_{e}} \times 10^{-10}$	21.2	13.0	0.42	0.19

Table 3: Upper limits on the NSI parameters $\epsilon_{\mu e}^{fV}$ and the ratios $R_{\nu_{\mu} \leftrightarrow \nu_{e}}$ for the FC $\nu_{\mu} \leftrightarrow \nu_{e}$ reaction channel resulting from the sensitivity of the $\mu^{-} \rightarrow e^{-}$ conversion experiments.

D.K. Papoulias and T.S. Kosmas, Phys. Lett. B 728 482 (2014)

Excluded region of observation for $u_{\mu} \rightarrow \nu_{e}$

Simulated signals

- (a) supernova neutrinos
- (b) stopped-pion muon neutrinos
- expected limits on NSI from next generation $\mu^- \to e^-$ conversion experiments is used

Tensorial contribution to NSI neutrino-nucleus scattering

The Lagrangian

$$\mathcal{L}_{\mathrm{NSI}}^{T} = -2\sqrt{2}G_{F}\sum_{\substack{f=u,d\\\alpha,\beta=\,\mathsf{e},\mu,\tau}} \epsilon_{\alpha\beta}^{fT} \left[\bar{\nu}_{\alpha}\sigma^{\mu\nu}\nu_{\beta}\right] \left[\bar{f}\sigma_{\mu\nu}f\right]$$

J. Schechter, J. W. F. Valle (1981), Phys. Rev. D24 (1981) 1883

Differential cross section

$$\frac{d\sigma_{\mathrm{NSI},\nu_{\alpha}}}{dT_{N}} = \frac{4G_{F}^{2}M}{\pi} \left[\left(1 - \frac{T_{N}}{2E_{\nu}} \right)^{2} - \frac{MT_{N}}{4E_{\nu}^{2}} \right] \left| \langle gs || G_{T,\nu_{\alpha}}^{\mathrm{NSI}}(q) || gs \rangle \right|^{2}$$

J. Barranco, A. Bolanos, E.A. Garces, O.G. Miranda and T.I. Rashba, Int. J. Mod. Phys. A27 (2012) 1250147

Nuclear matrix element

$$\left| \langle gs || G_{T,\nu_{\alpha}}^{\text{NSI}}(q) || gs \rangle \right|^{2} = \left[\left(2\epsilon_{\alpha\beta}^{uT} + \epsilon_{\alpha\beta}^{dT} \right) ZF_{Z}(q^{2}) + \left(\epsilon_{\alpha\beta}^{uT} + 2\epsilon_{\alpha\beta}^{dT} \right) NF_{N}(q^{2}) \right]^{2}$$

- neutrino electromagnetic effects
- NSI neutrino transition magnetic moments are generated at 1-loop level

D.K. Papoulias and T.S. Kosmas, Phys. Lett. B to be submitted

Theocharis Kosmas (Ioannina University)

Neutrino NSI transition magnetic moment contribution to the cross section

Neutrino magnetic moment contributes to the total cross section

$$\left(\frac{d\sigma}{dT_N}\right)_{tot} = \left(\frac{d\sigma}{dT_N}\right)_{SM} + \left(\frac{d\sigma}{dT_N}\right)_{magn}$$

P. Vogel, J. Engel, Phys. Rev. D39 (1989) 3378.

In our NSI approximation the diff. cross section due to NSI transition NMM reads

$$\left(\frac{d\sigma}{dT_N}\right)_{magn} = \frac{\pi a^2 \mu_{\alpha\beta}^2 Z^2}{m_e^2} \left(\frac{1 - T_N/E_\nu}{E_\nu} + \frac{T_N}{4 E_\nu^2}\right) F_Z^2(q^2)$$

What is new in this cross section?

- $\mu_{\nu} \rightarrow \mu_{\alpha\beta}$ (NMM due to flavour transitions)
- Nuclear physics details enter the proton form factor

see also A.C. Dodd, E. Papageorgiu, S. Ranfone, Phys. Lett. B266 (1991) 434.

D.K. Papoulias and T.S. Kosmas, Phys. Lett. B to be submitted

Constraining tensorial neutrino NSI parameters

- exploit limits to further constrain neutrino magnetic moment
- Variation of the tensor NSI parameters

D.K. Papoulias and T.S. Kosmas, Phys. Lett. B 747(2015)454

Comparison of the cross sections at TEXONO

D.K. Papoulias and T.S. Kosmas, Phys. Lett. B 747(2015)454

• The tensorial contribution is larger than the transition NMM one

- events over threshold
- vector couplings (SM or NSI)
- 400 eV threshold
- 1 kg of ⁷⁶Ge detector material

In view of the detection, for the first time, coherent NC ν -nucleus scattering events at SNS and reactor neutrino beams, predictions for the signals and expected event rates in several nuclear ν -detectors are required

- for the SM and exotic ν -reactions
- examine ν -magnetic moments induced via tensor NSI couplings

New physics is also expected to come out from SNS and reactor neutrino experiments (COHERENT, TEXONO, etc.) for the open problems

- neutrino magnetic moment
- SM precision tests (i.e. Weinberg-angle)

To this aim, we provided QRPA calculations and extracted constrains for non-standard neutrino interaction parameters (vector and tensor)

Collaborators:

- University of Ioannina, Greece: J.D. Vergados, G.K. Leontaris V. Tsakstara, T. Smponias, P. Giannaka, D.K. Papoulias
- T.E.I. of Western Macedonia, Greece: J. Sinatkas
- NCSR Democritos, Greece: D. Bonatsos
- Univ. of Valencia, Spain: Group of J.W.F. Valle
- RCNP, Univ. of Osaka, Japan: H. Ejiri
- Univ. of Tuebingen, Germany: Group of A. Faessler, K. Kokkotas
- Univ. of Jyvaskyla, Finland: Group of J. Suhonen
- UCL. London, UK: Frank Deppisch

Thank you for your attention !