High-precision Study of Weak Interaction with Neutrons

Kenji Mishima (J-PARC, KEK)

International Workshop on Neutrino Nuclear Responses for Double Beta Decays and Astro-Neutrino Interactions (NNR16) September 29-30, 2016, RCNP, Osaka University

Topics

- Neutron beta decay
 - Neutron lifetime
 - Weak axial vector coupling $\lambda = g_A/g_V$
- Experiment with J-PARC pulsed neutron
 - Measurement of neutron lifetime
 - Measurement of ¹⁴N(n,p)¹⁴C reaction cross section

Neutron lifetime

Neutron beta decay lifetime

The neutron decays into the proton, the electron, and the antineutrino in 880 sec. This is the simplest nuclear beta decay.

The neutron lifetime is important to

- Big Bang Nucleosynthesis
- Reactor neutrino anomaly
- Solar neutrino
- CKM unitarily
- Proton spin
- Goldberger-Treiman/Muon caputre
- Bjorken sum rule
- Lattice calculation benchmark

Next generation Experiments to Measure the Neutron lifetime 9th.Nov.2012, Santa Fe

Neutron Lifetime

Neutron lifetime is an important parameter for both of particle physics and cosmology.

880.3±1.1s (PDG2015)

There is 8.4sec (3.8 σ) deviation of the value of lifetime between two methods of measurement.

Big bang nucleosynthesis CMB & He/H & Neutron Lifetime

Light elements up to N=7 were created in 3 minute after the big bang (Big Bang Nucleosynthesis). Abundance of them can be calculated by baryon-to-photon ratio, nuclear cross sections, and **the neutron lifetime**.

CMB+BAO observation² Independently result $N_{eff} = 3.43 \pm 0.26$, which has 1.7σ deviation from 3. We may missing something in the early universe.

1. Izotov, Y. I., G. Stasińska, and N. G. Guseva. "Primordial 4He abundance: a determination based on the largest sample of H II regions with a methodology tested on model H II regions." *Astronomy & Astrophysics* 558 (2013): A57.

2. Aubourg, Éric, et al. "Cosmological implications of baryon acoustic oscillation measurements.", Physical Review D 92.12 (2015): 123516.

Reactor antineutrino anomaly

Neutrino charged-current interactions with proton is well used reaction for neutrino water Cherenkov detector. It is the inversed reaction of the neutron beta decay, thus the cross section is calculated by the neutron lifetime.

Neutron beta decayCharged current

Recent reactor neutrino measurements observed $94.3 \pm 2.4\%$. Neutron lifetime of 8 sec contribute 1% change.

An, F. P., et al. "Improved Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay." arXiv preprint arXiv:1607.05378 (2016).

The weak axial vector coupling $\lambda = g_A/g_V$

Fermi and Gamow-Teller decay

Nuclear beta decay has 2 types, Fermi and GT decay.

S: Spin angular momentum L: orbital angular momentum J: Angular momentum of nucleus

Gamow-Teller has ~27% larger coupling constant due to violation of the chiral symmetry. The value called, $\lambda = g_A/g_V$, is experimentally determined by measuring an asymmetry parameter of the neutron beta decay.

Decay parameters of the polarized neutron

Can be described by λ parameter in standard model.

$$\begin{split} d\Gamma &\propto \mathcal{N}(E_e) \bigg\{ 1 + a \frac{\vec{p}_e \cdot \vec{p}_\nu}{E_e E_\nu} + b \frac{\Gamma m_e}{E_e} \\ &+ \langle \vec{J} \rangle \cdot \left[A \frac{\vec{p}_e}{E_e} + B \frac{\vec{p}_\nu}{E_\nu} + D \frac{\vec{p}_e \times \vec{p}_\nu}{E_e E_\nu} \right] \\ &+ \vec{\sigma} \cdot \left[N \langle \vec{J} \rangle + G \frac{\vec{p}_e}{E_e} + Q' \hat{p}_e \hat{p}_e \cdot \langle \vec{J} \rangle + R \langle \vec{J} \rangle \right. \\ &\times \left. \frac{\vec{p}_e}{E_e} \right] \bigg\} d\Omega_e d\Omega_\nu dE_e, \end{split}$$

$$\mathcal{N}(E_e) = p_e E_e (E_0 - E_e)^2; E_e (E_\nu), \vec{p}_e (\vec{p}_\nu)$$

The β -Asymmetry Parameter A is the most sensitive for λ parameter, which can measured by energy and angular distribution of electrons against neutron spins.

Mund, D., et al. "Determination of the Weak Axial Vector Coupling λ = g A/g V from a Measurement of the β -Asymmetry Parameter A ¹⁰ in Neutron Beta Decay." *Physical review letters* 110.17 (2013): 172502.

Nuclear reaction in the sun pp-chain and CNO cycle

For $p+p \rightarrow d+e^++v_e$, Fermi decay is excluded. Thus, this reaction is pure Gamow-Teller (g_A)decay. λ value is necessary to calculate the cross section.

Adelberger, E. G., et al. "Solar fusion cross sections. II. The p p chain and CNO cycles." *Reviews of Modern Physics* 83.1 (2011): 195.

Neutron decay for V_{ud} in CKM-matrix

 V_{ud} in CKM matrix is most precisely determined by nuclear $0^+ \rightarrow 0^+$ beta decay lifetimes. Unitarily of CKM matrix gives important information to the standard model.

 V_{ud} can be calculate by neutron lifetime and λ parameter independent in nuclear models.

$$|V_{
m ud}|^2 = rac{(4908.7 \pm 1.9)s}{ au_n \left(1 + 3\lambda^2
ight)},$$

W. J. Marciano and A. Sirlin, Phys. Rev. Lett. 96, 032002 (2006)

12

Experiment with J-PARC pulsed neutron

Collaborators

Katsuya Hirota², Sei leki¹, Takashi Ino³, Yoshihisa Iwashita⁴, Masaaki Kitaguchi⁵, Ryunosuke Kitahara⁶, Kenji Mishima³, Aya Morishita⁷, Naoki Nagakura¹, Hideyuki Oide⁸, Hidetoshi Otono⁹, Yoshichika Seki¹⁰, Tatsushi Shima¹¹, Hirohiko M. Shimizu², Naoyuki Sumi⁷, Hirochika Sumino¹², Kaoru Taketani³, Tatsuhiko Tomita⁷, Takahito Yamada¹, Satoru Yamashita¹³, Mami Yokohashi⁴, Tamaki Yoshioka⁹

The Univ. of Tokyo¹, Nagoya Univ.², KEK³, ICR, Kyoto Univ.⁴, KMI, Nagoya Univ.⁵, Kyoto Univ.⁶, Kyushu Univ.⁷, CERN⁸, RCAPP, Kyushu Univ.⁹, J-PARC Center, Japan Atomic Energy Agency¹⁰, RCNP, Osaka Univ.¹¹, GCRC, The Univ. of Tokyo¹², ICEPP, The Univ. of Tokyo¹³

Measurement of neutron lifetime

Principle of our experiment

Cold neutrons are injected into a TPC.

The neutron β -decay and the ³He(n,p)³H reaction are measured simultaneously.

This method is free from the uncertainties due to external flux monitor, wall loss, depolarization, etc. Our goal is measurement with 1 sec uncertainty.

J-PARC / MLF / BL05

J-PARC

Materials and Life Science Experimental Facility(MLF)

Spallation neutron target (designed for1MW)

pulsed neutron Beam line BL05 Neutron optics and physics(NOP)

Time Projection Chamber(TPC)

High efficiency and Low background TPC is used beta and ³He(n,p)³H detection.

Anode wire	29 of W-Au wires(+1720V)	
Field wire	28 of Be-Cu (0V)	
Cathode wire	120 of Be-Cu (0V)	Windows for
Drift length	30 cm (-9000V)	calibration by ⁵⁵ Fe
Gas mixture	He:CO2=85kPa:15kPa	
TPC size(mm)	300,300,970	1

the second

Inside of TPC

Neutron bunches in TPC

Spectrum of beta decay and Beam-induced background

origin of the background is near TPC wall

"DC"

<u>D</u>istance from beam <u>C</u>enter background has large DC value

Spectrum of beta decay and Beam-induced background

origin of track is near TPC wall βdecay **Drift Time** BKG **Drift Time** "Drift Time" arrival time difference of drifting electrons beam background has long DriftTime axis drift direction linear scale log scale counts counts Experiment ***** MC Beta 10² MC LiF 400 MC OffBeta 10 Drift Time = 17 us 200 signal region 10^{-1} 100 200 100 200 300 300 0 Drift Time [0.1 us] Drift Time [0.1 us]

List of uncertainties

$$\tau_n = \frac{1}{\rho \sigma_0 v_0} \left(\frac{S_n / \epsilon_n}{S_\beta / \epsilon_\beta} \right)$$

- σ_0 ³He(n,p)³H cross section for a 2200 m/s neutron
- v_0 | 2200 m/s (neutron velocity)
- ρ ³He number density
- \dot{N}_{β} number of β decay events
- $N_{^{3}\mathrm{He}}$ | number of $^{^{3}\mathrm{He}(\mathrm{n,p})^{^{3}\mathrm{H}}}$ events

 ε selection efficiency

		correction (%)	uncertainty (%)
	statistics		~ 1
	³ He(n, p) ³ H leakage	0	< 0.34
No	beam-induced background	8.6	being evaluated
INβ	efficiency	6.1	+1.0 - 0.3
	pileup	-0.39	0.39
	background subtraction	-0.43	0.28
Nau	¹⁴ N(n,p) ¹⁴ C contamination	-1.45	0.23
IN 3He	¹⁷ O(n, α) ¹⁴ C contamination	-0.5	0.03
Νβ, Νзне	Spin Flip Chopper S/N	< 0.5	< 0.5
	³ He number density		0.65
ρ	chamber deformation (pressure)	<0.33	<0.33
	temperature non-uniformity	0.23	0.23
0 0	³ He(n, p) ³ H cross section		0.13

21

Measurement of ¹⁴N(n,p)¹⁴ reaction cross section

¹⁴N(n,p)¹⁴C in astrophysics

In s-process, neutron capture reaction is called as neutron poison. ¹⁴N is a major production in CNO cycle, thus, ¹⁴N(n,p)¹⁴C reaction is important.

https://www.jicfus.jp/jp/promotion/pr/mj/2011-4/

(n,p) reactions

 (n,p) reactions, like ³He(n,p)³H and ¹⁴N(n,p)¹⁴C have same initial and final state of inversed reaction of beta decay.

$$^{14}N+n \rightarrow ^{14}C+p+624 \text{ keV}$$

$$^{14}N + e^{-} \leftarrow {}^{14}C + \nu_e - 156 \text{ keV}$$

- They are not weak interactions. But CAN they help to understand beta decay reactions?
- We could measure ¹⁴N(n,p)¹⁴C reaction cross section using the TPC with 0.3%.

¹⁴N(n, p)¹⁴C event in lifetime experiment

Because the TPC is used in sealed condition, contamination of ¹⁴N was observed in bad vacuum. Low anode voltage measurements were done for identification of ¹⁴N to avoid distortion by space charge effect.

Fabrication of TPC gas

0. Measure V1/V2 ratio.

1. Inject ³He in MV1.

Measured Gas fill, determined by 2 method

Gas No	³ He Partial pressure	Static Expansion (V1/V2) ³ He/ ¹⁴ N	Direct by Baratron ³ He/ ¹⁴ N
1	8.1 mPa*	2.22(4)×10 ⁻⁷	
2	9 Pa	2.356(11)×10 ⁻⁴	2.354(10)×10 ⁻⁴
3	21 Pa	5.211(15)×10 ⁻⁴	5.203(12)×10 ⁻⁴

Pressure ratios determined by 2 method were consistent in uncertainties.

^{*3}He of Gas#1 is content of a commercial He bottle, which was measured by mass spectroscopy.

The peaks positions were calibrated for each run (300 sec) as ${}^{14}N(n,p){}^{14}C$ for 626keV.

Energy calibration for position

-400-300-200-100 0 100 200 300 400 Center of Energy Z [mm]

Center of Energy Z [mm]

Energy spectrum calibrated

For quick analysis, number of evens were counted for ¹⁴N and ³He in 520~700 keV and 700keV~880 keV, respectively. We are making response functions to evaluate counts of these peaks.

Error budgets

 $\sigma_{14N}(v_0) = \frac{\epsilon_{3He}}{\epsilon_{14N}} \frac{R_{14N}}{R_{3He}} \frac{\rho_{3He}}{\rho_{14N}} \sigma_{3He}(v_0)$

			Gas 2		Gas 3	
Paramete	r	Effect	Correction[%]	Uncertainty [%]	Correction[%]	Uncertainty [%]
Efficiency	ем	Escape to X direction	Escape to X direction -0.013 0.013		-0.013	0.013
	ем	Escape to Y direction	-0.067	0.067	-0.061	0.061
	ем/ене		-0.08	0.08	-0.07	0.07
Event rate	RN	Statistic	0	0.18	0	0.13
	Rне	Statistic	0	0.22	0	0.11
		Distinction of 2 peaks		Being ev	valuated	
	RN/RHe			0.29		0.17
Target number	Gas pressure and temperature		0	0.13	0	0.07
		Chemical purity of N ₂ (specification)	-0.005	0.005	-0.005	0.005
		Abundance of ¹⁴ N (Literature values)	-0.3663	0.0004	-0.3663	0.0004
		Deformation of the chamber	-0.33	0.33	-0.07	0.07
	ρΝ		0.70	0.35	0.44	0.10
		³ He content in commarginal He gas	0	0.00175	0	0.0008
		Purity of ³ He (specification)	-0.05	0.05	-0.05	0.05
		Gas pressure and temperature	0	0.24	0	0.16
		Thermal transpiration effect of Baratron	-1.74	0.1	-1.08	0.1
	hoHe			0.27		0.20
	$ ho_{He}/ ho_{N}$			0.44		0.22
σ^{3} He(n,p) ³ H	О ЗНе	Literature values	0	0.13	0	0.13
$\sigma^{14}N(n,p)^{14}C$				0.55		0.32

Other (n,p) reactions

Reaction	Q value (keV)	Cross section	Uncertainty	Available Gas
³ He(n,p) ³ H	763.76	$5333(7) b^1$	0.13%	He
¹⁰ B(n,p) ¹⁰ Be	225.55	$6.8(5) \text{ mb}^2$	7.4%	BF_3
$^{14}N(n,p)^{14}C$	625.87	1.83(3) b	1.6%	N_2
${}^{33}S(n,p){}^{33}P$	533.84	$2(1) \text{ mb}^1$	50%	SF_6
$^{35}{ m Cl}(n,p)^{35}{ m S}$	615.02	$489(14) \text{ mb}^1$	2.9%	CCl_4
³⁶ Ar (n,p) ³⁶ Cl	72.82	$< 1.5 \text{ mb}^3$	1.8%	Ar

1. Richard B. Firestone eighth edition, "Table of isotope", John Wiley & Sons, Bradford, (1996)

2. Lal, D., et al., *Nuclear Physics A* 468.2 (1987): 189-192.

3. Jiang, S. S., et al. *NIMB* 52.3 (1990): 608-611.

Other (n,p) reactions

Reaction	Q value (keV)	Cross section	Uncertainty	Available Gas
³ He(n,p) ³ H	763.76	$5333(7) b^1$	0.13%	He
¹⁰ B(n,p) ¹⁰ Be	225.55	$6.8(5) \text{ mb}^2$	7.4%	BF_3
$^{14}N(n,p)^{14}C$	625.87	$1.863(5) b^4$	0.3%	N_2
${}^{33}S(n,p){}^{33}P$	533.84	$2(1) \text{ mb}^1$	50%	SF_6
$^{35}{ m Cl}(n,p)^{35}{ m S}$	615.02	$489(14) \text{ mb}^1$	2.9%	CCl_4
³⁶ Ar (n,p) ³⁶ Cl	72.82	$< 1.5 \text{ mb}^3$	1.8%	Ar

1. Richard B. Firestone eighth edition, "Table of isotope", John Wiley & Sons, Bradford, (1996)

2. Lal, D., et al., *Nuclear Physics A* 468.2 (1987): 189-192.

3. Jiang, S. S., et al. *NIMB* 52.3 (1990): 608-611.

4. Kitahara et al, JPS meeting (2016) Autumn at Miyazaki

Summary

- Neutron decay parameters (lifetime and λ) are important parameter for
 - Big Bang Nucleosynthesis
 - Reactor neutrino anomaly
 - Solar neutrino
 - CKM unitarily
- We are measuring the neutron lifetime at J-PARC.
 - Our goal is 1 sec accuracy.
 - We obtained O(10) sec data. The first data will coming soon.
- We measured ¹⁴N(n,p)¹⁴C reaction cross section as 1.863(5) barn, 0.3% accuracy.

- Other (n,p) reactions can be measured in the same manner.

Other (n,a) reactions

Reaction	Q value (keV)	Cross section	Uncertainty	Available Gas
¹⁰ B(n,a) ¹⁰ Be	225.55	3837(9) b ¹		BF_3
${}^{33}S(n,a){}^{33}P$	3493.51	$0.19(8) b^1$		SF_6
$^{35}{ m Cl}(n,a)^{35}{ m S}$	937.74	0.08 (4) b^1		CCl_4
³⁶ Ar (n,p) ³⁶ Cl	2000.72	$5.5(1) \mathrm{~mb^{1}}$		Ar

1. Richard B. Firestone eighth edition, "Table of isotope", John Wiley & Sons, Bradford, (1996)

2. Lal, D., et al., *Nuclear Physics A* 468.2 (1987): 189-192.

3. Jiang, S. S., et al. *NIMB* 52.3 (1990): 608-611.

4. Kitahara et al, JPS meeting (2016) Autumn at Miyazaki