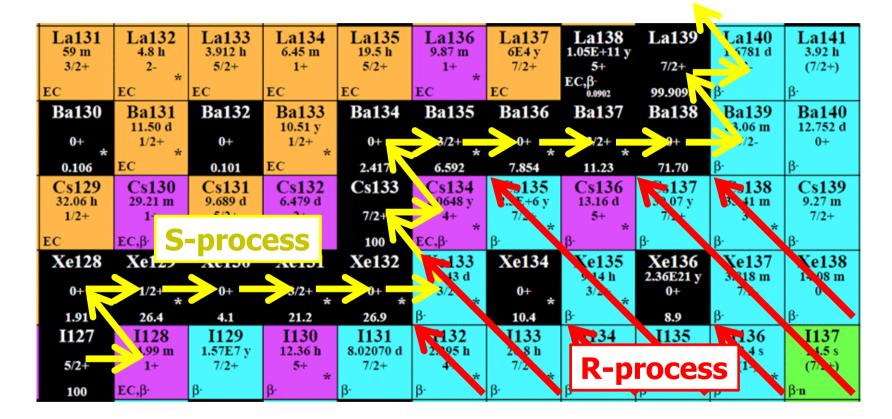

Double Beta Decays in Nucleoshynthesis Tatsushi Shima

Research Center for Nuclear Physics, Osaka University

International Workshop on Neutrino Nuclear Responses for Double Beta Decays and Astro-Neutrino Interactions September 29-30, 2016, Osaka, Japanj **Barium** is a typical s-element in solar-system, but is expected to be dominated by r-process in metal-poor (MP) stars.

 $f_{odd} = \frac{N\left({}^{135}Ba\right) + N\left({}^{137}Ba\right)}{N\left(Ba\right)}$

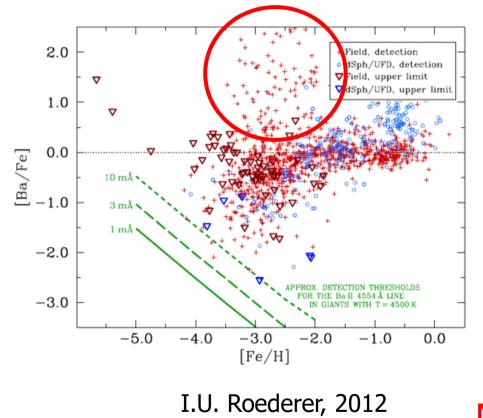

 $= 0.11 \pm 0.01$ for s-only

0.46±0.06 for r-only

0.17 in solar system (Anders & Grevesse 1989)

I.U. Roederer, 2012

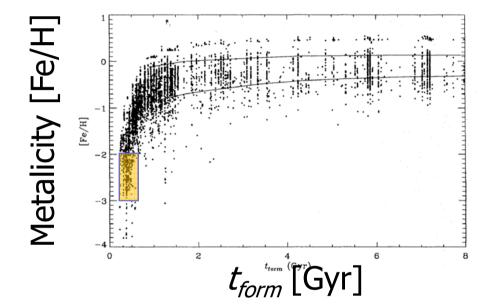
Stellar s- and r-process paths


Note. f_{odd} becomes large for r-process, because ¹³⁴Ba and ¹³⁶Ba are shielded by ¹³⁴Xe and ¹³⁶Xe, respectively.

Slow neutron-capture processes

	Main process	Weak process		
Atomic mass region	A>90	56 <a<90< td=""></a<90<>		
Neutron density [cm ⁻³]	$10^{7} \sim 10^{10}$	$10^{6} \sim 10^{7}$		
Duration [y]	~20000 /pulse	$10^{5} \sim 10^{6}$		
Astrophysical site	He-shell burning in Low-mass AGB* (M=1.5~3M _o)	Core He-burning in Massive star (M >10M _☉)		

* Asymptotic Giant Branch


Barium is a typical s-element in solar-system, but is expected to be dominated by r-process in metal-poor (MP) stars.

$$f_{odd} = \frac{N(^{135}Ba) + N(^{137}Ba)}{N(Ba)}$$
$$= 0.11 \pm 0.01 \text{ for s-only}$$
$$0.46 \pm 0.06 \text{ for r-only}$$
$$0.17 \text{ in solar system}$$
(Anders & Grevesse 1989)
$$= \begin{bmatrix} 0.18 \pm 0.08 \\ \text{Gallagher, Aoki, Honda et al. 2012} \\ 0.15 \pm 0.12 \\ \text{Collet, Asplund, Nissen 2009} \end{bmatrix}$$

★ Age-metalicity relation

C.M. Raiteri et al., A&A 315, 105-115 (1996)

[Fe/H]= -2.15 ~ -3.07 Gallagher, Aoki, Honda et al. 2012

[Fe/H]= -2.50 Collet, Asplund, Nissen 2009

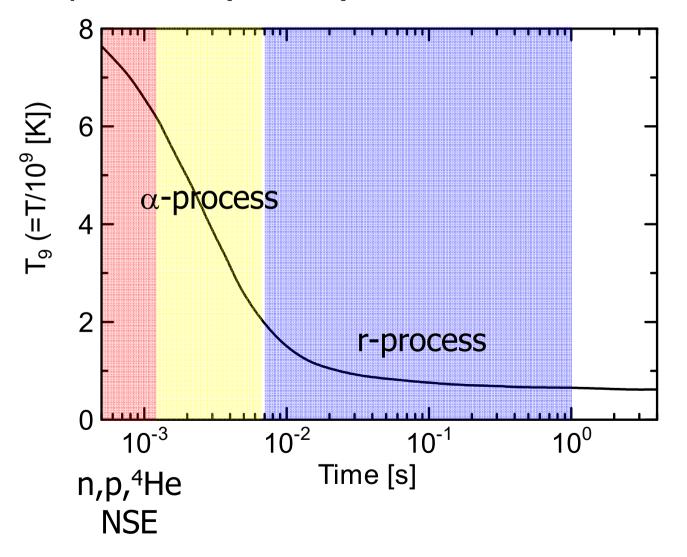
★ Lifetime of stars;
$$\tau_{MS} = 7 \times 10^9 \left[\frac{M}{M_{\odot}} \right]^{-3}$$
 [yr]

 $\tau_{MS} = 0.26 \sim 2.1 \text{ Gyr for } M = 1.5 \sim 3 M_{\odot}$

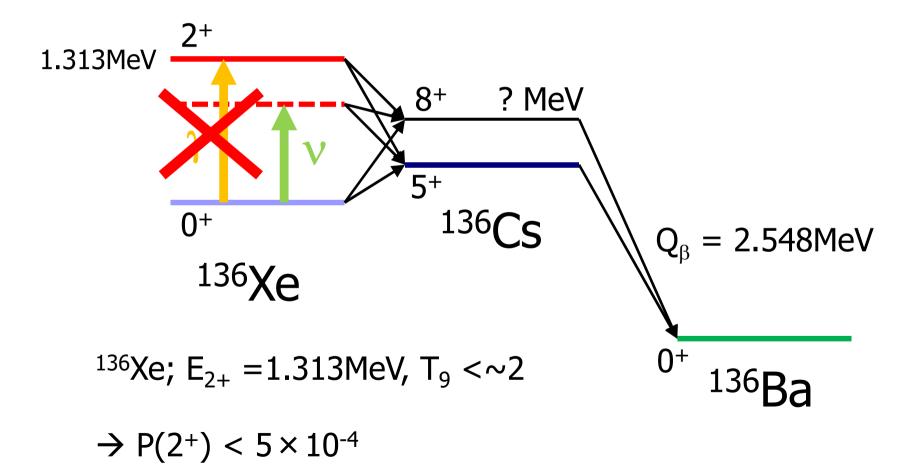
- Observation discovered old stars with enhanced abundances of ¹³⁴Ba and ¹³⁶Ba.
- ¹³⁴Ba and ¹³⁶Ba are produced mainly by main s-process.
- Main s-process occurs in AGB phase of low-mass stars, which take long time to enter He-burning stage.

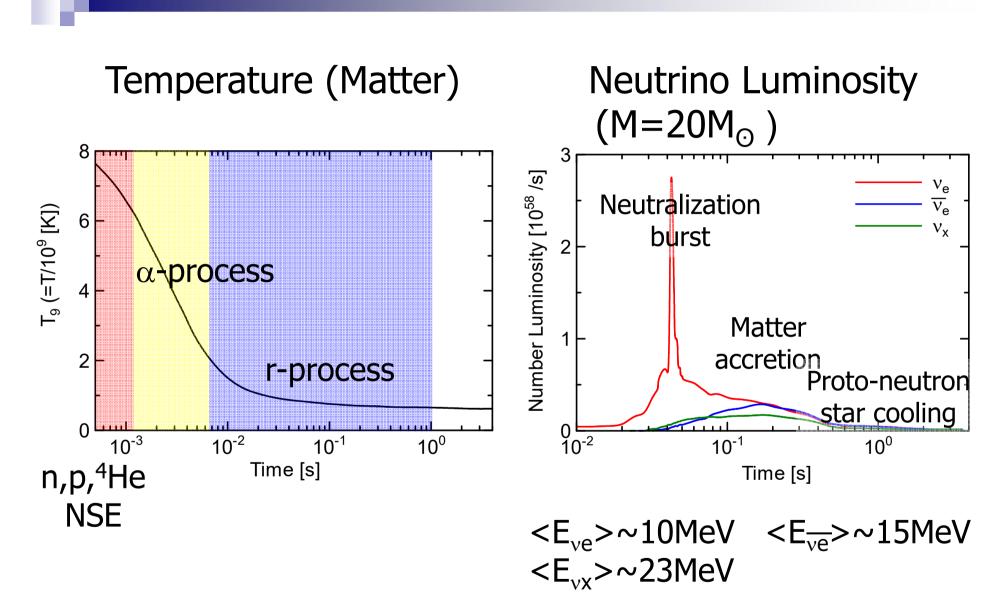
Is there any unknown type of s-process ? Is there any unknown effect in r-process ?

Neutrino-induced ββ decay


La131 59 m	La132 4.8 h	La133 3.912 h	La134 6.45 m	La135 19.5 h	La136 9.87 m	La137 6E4 y	La138 1.05E+11 y	La139	La140 1.6781 d	La141 3.92 h
3/2+	2- *	5/2+	1+	5/2+	1+	7/2+	5+	7/2+	3-	(7/2+)
EC	EC	EC	EC	τC	TC I	EC	EC,β- 0.0902	99.9098	β-	β-
Ba130	Ba131 11.50 d	Ba132	Ba133 10.51 y	F 134	A 135	136	F 137	Ba138	Ba139 83.06 m	Ba140 12.752 d
0+	1/2+	0+	1/2+	0+ *	3/2+	0+	3/2+	0+	7/2-	0+
0.106	EC	0.101	EC	2.417	6.592	7.854	11.23	71.70	β·	β-
Cs129 32.06 h	Cs130 29.21 m	Cs131 9.689 d	Cs132 6.479 d	Cs133	Cs134 2. 548 y	Cs135 2.3E+6 y	1. 16 d	Cs137 30.0	Cs138	Cs139 9.27 m
1/2+	1+	5/2+	2+	7/2+	2. 140 y	7/2+	5	7/2		7/2+
EC	EC,β·	EC	EC,β∙	100	EC,β-	β-	β-	B -	v,c)	
Xe128	Xe129	Xe130	Xe131	Xe132	Xe133	Xe134	Xe135	Xe136	Xe137	Xe138
0+	1/2+ *	0+	3/2+	0+ *	5.243 d 3/2+	0+	9.14 h 3/2+	2.36E21 y 0+	3.818 m 7/2-	14.08 m 0+
1.91	26.4	4.1	21.2	26.9	β-	10.4	β-	8.9	β-	β-
I127	I128	I129	I130	I131	I132	I133	I134	I135	I136	I137
5/2+	24.99 m 1+	1.57E7 y 7/2+	12.36 h 5+	8.02070 d 7/2+	2.295 h 4+	20.8 h 7/2+	52.5 m (4)+	6.57 h 7/2+	83.4 s (1-)	24.5 s (7/2+)
100	EC,β·	β-	* β·	β-	* β·	* β·	* β·	β-	β- *	β·n

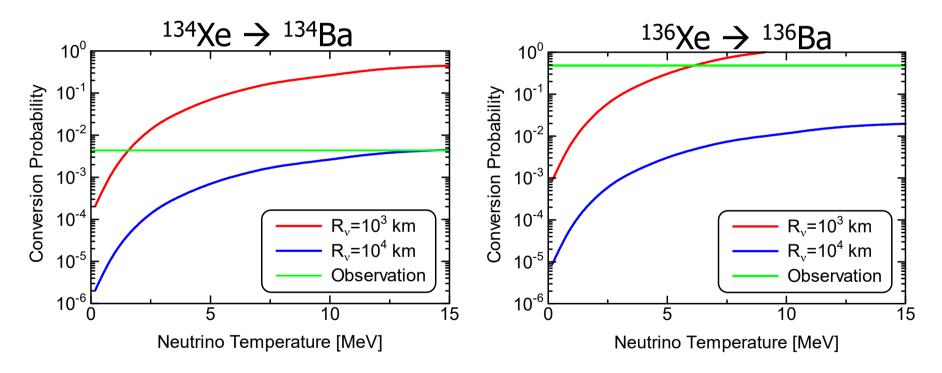
Neutrino-induced double-beta decays of ^{134,136}Xe may play crucial roles in production of ^{134,136}Ba in r-process.


v-induced $\beta\beta$ v.s. $\beta\beta$ from excited states



Temperature (Matter)

v-induced $\beta\beta$ v.s. $\beta\beta$ from excited states



T. Totani, K. Sato, H.E.Dalhed, J.R.Wilson, ApJ 496, 216-225 (1998)

Probability of 134,136Ba production via v- $\beta\beta$ **process**

Assuming total energy of emitted neutrinos to be 3.5×10^{53} erg, v_e will have total energy of $\sim 6 \times 10^{52}$ erg or $\sim 3.7 \times 10^{58}$ MeV.

Given realistic reaction rates, temperature and radius of $v-\beta\beta$ region can be constrained.

Summary

- Some metal-poor stars indicate large enhancement in even-even Ba isotopes.
- Heavier (~3M_☉) component of low-mass AGB stars may contribute. Another possibility will be ββ-decays of ^{134,136}Xe induced by absorptions of neutrinos or photons.
- γ-induced ββ-decays of ^{134,136}Xe are unlikely due to too small population of 1st excited states at r-process temperature; T₉ < 2.
- On the other hand, v-induced $\beta\beta$ -decay is still possible.
- Since b-decay lifetimes of ¹³⁴I and ¹³⁶I are much longer than r-process duration, ν-ββ process cannot occur in single r-process episode.
- For quantitative analysis, reliable calculation for ν-ββ rate is necessary.