Suppression of the pnQRPA NMEs for Highly-Forbidden Unique Beta Transitions

Jouni Suhonen

Department of Physics, University of Jyväskylä

International Workshop on Neutrino Nuclear Responses for Double Beta Decays and Astro-Neutrino Interactions (NNR16) RCNP, Osaka University, Japan, September 29-30, 2016

Contents:

- Incentive: $0\nu\beta\beta$ Decays
- Earlier studies: GT and SD Decays
- Unique Spin-Multipole Decays
- Examples

Motivation for the Work: Double Beta Decay

Two-Neutrino Double Beta Decay of ⁷⁶Ge

Neutrinoless Double Beta Decay of ⁷⁶Ge

The **POWER** of Neutrinoless $\beta\beta$ Decay

$0\nu\beta\beta$ Decay is Able to:

- Reveal if the neutrino is a Majorana particle
- Probe the absolute mass scale of the neutrino
- Probe the mass hierarchies and CP phases

Problem: NUCLEAR MATRIX ELEMENTS!

Experimental Probes for Double Beta Matrix Elements

Question:

HOW CAN WE PROBE THE VIRTUAL TRANSITIONS?

Answer:

BY e.g. BETA-DECAY DATA

Available Data on Beta Decays I

Spin-Multipole (SM) Nuclear Matrix Elements

General half-life formula for the allowed and unique-forbidden beta decays

$$\frac{2K}{1/2}(0_{gs}^{+}\leftrightarrow J^{\pi}) = rac{Constant}{rac{g_{A}^{2}}{2J_{i}+1}(\mathbf{M}^{K}(\mathbf{SM}J^{\pi}))^{2}f_{K}}$$

,

where

- f_K is the phase-space factor for the K^{th} forbidden (allowed $\equiv 0^{th}$ forbidden) β -decay transition,
- *g*_A is the axial-vector coupling constant,
- $J_i = J$ or $J_i = 0$ (J = K + 1) is the angular momentum of the decaying state, and
- $M^{K}(SMJ^{\pi})$ is the spin-multipole NME for the K^{th} forbidden transition.

The unique decays are classified as:

Κ	0 (allowed)	1	2	3	4	5	6	7
J^{π}	1^{+}	2-	3+	4^{-}	5^{+}	6-	7^+	8-

Global Study for the First-Forbidden (K = 1) Spin-Dipole $2^-_{gs} \rightarrow 0^+_{gs}$ Decays

H. Ejiri, N. Soukouti and J. Suhonen, Spin-dipole nuclear matrix elements for double beta decays and astro-neutrinos, Phys. Lett. B 729 (2014) 27

Global Study for the Allowed GT $1_{gs}^+ \leftrightarrow 0_{gs}^+$ Decays

H. Ejiri and J. Suhonen, GT neutrino-nuclear responses for double beta decays and astro-neutrinos, J. Phys. G: Nucl. Part. Phys. 42 (2015) 055201

Jouni Suhonen (JYFL, Finland)

Allowed GT $1_{gs}^+ \leftrightarrow 0_{gs}^+$ Decays Continue . . .

Α	p-n conf.	$\bar{M}_{\mathrm{exp}}^{\mathrm{m}}$	$M_{\rm qp}$	$\bar{M}^{\rm m}_{\rm pnQRPA}$	$ar{k}$	$\bar{k}_{\rm NM}$
62 - 70	$1p_{3/2} - 1p_{1/2}$	0.265	0.99	0.401	0.268	0.660
78 - 82	$0g_{9/2} - 0g_{9/2}$	0.297	1.50	0.431	0.198	0.689
98 - 116	$0g_{9/2} - 0g_{7/2}$	0.467	1.82	1.015	0.257	0.459
118 - 136	$1d_{5/2} - 1d_{5/2}$	0.231	1.03	0.505	0.224	0.467
138 - 142	$1d_{5/2} - 1d_{3/2}$	0.345	1.33	0.420	0.259	0.821

Decays Through Higher Spin-Multipole ($K \ge 2$) Operators

Question:

WHAT CAN WE LEARN FROM THE UNIQUE HIGHER-FORBIDDEN β DECAYS?

Answer:

A LOT!

Jouni Suhonen (JYFL, Finland)

INCENTIVE: $0\nu\beta\beta$ Decay Through the Higher Spin-Multipole States

Decays Through Higher Spin-Multipole ($K \ge 2$) Operators

Task:

STUDY 148 UNIQUE HIGHER-FORBIDDEN β DECAYS IN ISOTOPIC CHAINS

Problem:

NO EXP. DATA AVAILABLE

Study:

$$k = rac{M_{
m pnQRPA}^{
m K}({
m SMJ}^{\pi})}{M_{
m qp}^{
m K}({
m SMJ}^{\pi})} = ?$$

Dependence on *K* and mass number *A*?

Example: Decays in the A = 88 Chain

Example: Decays in the A = 130 Chain (Including a $\beta\beta$ Decay)

Ratio k for β Decays Involving Non-magic Nuclei

k extracted using the geometric mean of the full set of K^{th} (K = 2 - 7) forbidden β -decay transitions in an isobaric chain.

Ratio k for β Decays Involving (Semi-)Magic Nuclei

k extracted without using the geometric mean for the K^{th} (K = 2 - 7) forbidden β -decay transitions

Note the logarithmic scale!

The transitions can be divided in two groups:

GROUP 1

with k > 0.005 and the mean $k = \frac{M_{\text{pnQRPA}}^{K}(\text{SMJ}^{\pi})}{M_{\text{qp}}^{K}(\text{SMJ}^{\pi})} = 0.38 \pm 0.20$

All non-magic cases and part of the magic cases belong to this group. GROUP 1 covers some 80% of all studied cases!

GROUP 2

with $k \leq 0.005$ and the mean

$$k = rac{M_{
m pnQRPA}^{
m K}({
m SMJ}^{\pi})}{M_{
m qp}^{
m K}({
m SMJ}^{\pi})} = (1.3 \pm 1.0) imes 10^{-3}$$

Part of the magic cases belong to this group.

For $K \ge 2$ only the nuclei of **GROUP 1** are considered

Α	$K = 0^*$	$K = 1^{**}$	<i>K</i> = 2	<i>K</i> = 3	K = 4	K = 5	K = 6	K = 7	Avg.
50 - 88	0.35	$0.40 \\ 0.40 \\ 0.40$	0.33	0.48	0.49	0.55	0.31	-	0.42
90 - 122	0.52		0.33	0.48	0.43	0.58	0.48	0.46	0.46
122 - 146	0.40		0.25	0.28	0.10	0.61	-	0.27	0.33

* H. Ejiri, N. Soukouti, J.S., Phys. Lett. B 729 (2014) 27

** H. Ejiri, J.S., J. Phys. G: Nucl. Part. Phys. 42 (2015) 055201

From ** we get:

А	$k_{\rm NM}$	ξ
50 - 96	0.67	2.2
98 - 136	0.46	4.7
138 - 146	0.82	1.5

Conjecture:

 $\xi = (k_{\text{NM}})^{-2} = t_{1/2}(\exp)/t_{1/2}(\operatorname{pnQRPA}) \Rightarrow \text{Correct the pnQRPA computed half-lives} \Rightarrow \text{Expected half-lives}$

Error Estimates for the Expected Half-lives

$$Q_{\rm EC} = 2.008 \,{\rm MeV}$$

$$T_{\rm gs}^{+} \frac{3.1 \times 10^7 \,{\rm a}}{\frac{92}{2} {\rm Nb}_{51}} \xrightarrow{6^{th} \,{\rm forb.}}{1/2} \left(\beta^{-}\right) = t_{1/2}({\rm EC}\beta^{+}) > t_{1/2}({\rm E}\beta^{+}) >$$

1 1V

(O) $(T\pi)$

Speculate by the $0\nu\beta\beta$ Decay

Conjecture:

$$M_{0\nu\beta\beta}^{J^{\pi}}(\text{true}) = k_{\text{NM}}^2 M_{0\nu\beta\beta}^{J^{\pi}}(\text{pnQRPA})$$

From

J. Hyvärinen and J. S., Analysis of the Intermediate-State Contributions to Neutrinoless Double β^- Decays, AHEP 2016 (2016) 4714829

One obtains

J_1^{π}	Nucleus	% of $M_{0 uetaeta}$	$k_{\rm NM}^2$	New % of $M_{0\nu\beta\beta}$
1_{1}^{+}	¹²⁴ Sn	8.2	0.21	1.7
2_{1}^{-}	⁷⁶ Ge	8.7	0.45	4.1
	⁸² Se	8.9	0.45	4.2
	⁹⁶ Zr	11	0.45	5.2
3_1^+	¹⁰⁰ Mo	2.1	0.21	0.4
	¹¹⁶ Cd	2.6	0.21	0.5
	¹²⁸ Te	0.5	0.21	0.1

EXAMPLES OF PREDICTED β-DECAY HALF-LIVES IN VARIOUS ISOTOPIC CHAINS CONTAINING DOUBLE-BETA-DECAYING NUCLEI

Jouni Suhonen (JYFL, Finland)

NNR16 24 / 44

Decays in the A = 54 Chain

Decays in the A = 58 Chain

Decays in the A = 84 Chain

Decays in the A = 86 Chain

$$Q_{\rm EC} = 1.075 \,{\rm MeV}$$

$$Q_{\rm EC} = 5.240 \,{\rm MeV}$$

$$Q_{\rm EC} = 1.315 \,{\rm MeV}$$

Decays in the A = 92 Chain

$$Q_{\rm EC} = 0.938 \, {\rm MeV} \qquad \begin{array}{c} \frac{6.26 \, {\rm m}}{{}^{94}_{44}} Ru_{50} & \frac{6.26 \, {\rm m}}{{}^{94}_{43}} Ru_{50} & \frac{94}{43} Ru_{50} & \frac{94}{44} Ru_{50} & \frac{94}{43} Ru_{50} & \frac{94}{43} Ru_{51} & \frac{94}{43}$$

Decays in the A = 96 Chain

Decays in the A = 104 Chain

$$Q_{\rm EC} = 1.139 \,{\rm MeV}$$

$$Q_{\rm EC} = 1.139 \,{\rm MeV}$$

$$Q_{\rm EC} = 1.139 \,{\rm MeV}$$

$$Q_{\rm EC} = 4.279 \,{\rm MeV}$$

$$Q_{\rm EC} = 4.279 \,{\rm MeV}$$

$$Q_{\rm EC} = 4.279 \,{\rm MeV}$$

$$Q_{\rm EC} = 1.137 \,{\rm MeV}$$

Decays in the A = 114 Chain

$$Q_{\rm EC} = 1.637 \,{\rm MeV}$$

$$Q_{\rm EC} = 6.063 \,{\rm MeV}$$

$$Q_{\rm EC} = 2.61 \,{\rm MeV}$$

$$Q_{\rm EC} = 2.6$$

Decays in the A = 116 Chain

Decays in the A = 120 Chain

Decays in the A = 122 Chain

Decays in the A = 124 Chain

Decays in the A = 128 Chain

Decays in the A = 132 Chain

$$Q_{\rm EC} = 4.88 \,{\rm MeV}$$

$$Q_{\rm EC} = 1.08 \,{\rm MeV}$$

$$Q_{\rm EC} = 1.08 \,{\rm MeV}$$

$$Q_{\rm EC} = 1.08 \,{\rm MeV}$$

Decays in the A = 134 Chain

Decays in the A = 136 Chain

$$0_{gs}^{+} \underbrace{\frac{17.63 \text{ s}}{^{136}_{52}} \text{Te}_{84}}_{\pi 0g_{9/2} - \nu 2p_{3/2}} \underbrace{5^{th} \text{ forb.}}_{t_{1/2}(\beta^{-}) =}_{7(2) \times 10^8 \text{ a}} \underbrace{46.9 \text{ s}}_{1_{gs}^{-}} \underbrace{\frac{83.4 \text{ s}}{^{136}_{153}}}_{1_{gs}^{-}} \underbrace{6_{\text{isom}}}_{f_{gs}^{-}} Q_{\beta^{-}} = 7.57 \text{ MeV}$$

$$Q_{\beta^{-}} = 4.43 \text{ MeV}$$

$$5^{th} \text{ forb.} \underbrace{t_{1/2}(\beta^{-}) =}_{5(1) \times 10^6 \text{ a}} \underbrace{(2.20 \pm 0.06) \times 10^{21} \text{ a}}_{1_{54}^{-}} 0_{gs}^{+}$$

$$\pi 0g_{9/2} - \nu 2p_{3/2} \underbrace{1_{136}^{-} \text{Ke}_{82}}_{1_{54}^{-}} 0_{gs}^{+}$$

Decays in the A = 136 Chain

Conclusions and Outlook

Conclusions:

- Previous studies on GT 1⁺ and SD 2[−] β decays shed light on the suppression chain: quasiparticle NME → pnQRPA NME → experimental NME
- From the above studies k_{NM} can be extracted
- From studies of unique high-forbidden β decays ($K \ge 2$) the suppression chain: quasiparticle NME \rightarrow pnQRPA NME can be extracted
- Using k_{NM} one can extract the expected half-lives for the 148 studied unique high-forbidden β decays
- Using k_{NM} one can speculate about modifications in the pnQRPA computed $0\nu\beta\beta$ -decay half-lives

Outlook:

- Find ways to use the present studies in a more reliable prediction of the pnQRPA-based 0νββ NMEs
- Urge measurements of the studied decays to see how accurate is the *k*_{NM} conjecture