Isovector and Isoscalar Spin Isospin Responses

Atsushi Tamii

Research Center for Nuclear Physics (RCNP) Osaka University, Japan

Neutrino Nuclear Responses for Double Beta Decays and Astro-Neutrino Interactions (NNR16) September 29-30, 2016, Osaka

Outline

I. <u>Electric Dipole Response of Nuclei</u> and the Symmetry Energy of the Nuclear EOS

II. Spin-Magnetic Response of Nuclei

III.Summary

Electric Dipole Response of Nuclei and the Symmetry Energy of the Nuclear EOS

I.

Symmetry Energy of the Nuclear Equation of State is important for nuclear physics and nuclear-astrophysics

https://www.youtube.com/watch?v=IZhNWh_lFuI

Lattimer and Prakash, Science 304, 536 (2004).

http://www.astro.umd.edu/~miller/nstar.html

Nuclear Equation of State

How to study the EOS?

Thermodynamics

Give a "small perturbation" to the system then observe how the system changes

 \rightarrow response

$$\kappa = -\frac{1}{V} \left(\frac{dV}{dp} \right)_{S}$$

adiabatic compressibility

equilibrium

Nuclear EOS

Small perturbation by an external field

Observe how the system change

 \rightarrow nuclear response

External	
Field 🕴	

Electric Dipole Response

dielectric material in an oscillating electric field

Electric Dipole (E1) Reduced Transition Probability

$$\frac{dB(E1)}{dE_x} = \frac{9\hbar c}{16\pi^3 e^2} \frac{\sigma_{abs}^{E1}}{E_x}$$

Electric Dipole Polarizability (α_D)

Electric dipole moment

$$p = \alpha_D \times E$$

 α_D : electric dipole polarizability

nucleus in a static electric field with fixing the c.m. position

Inversely energy-weighted sum-rule of B(E1)

$$\alpha_D = \frac{8\pi e^2}{9} \int \frac{1}{E_x} \frac{dB(E1)}{E_x}$$

first order perturbation calc. A.B. Migdal: 1944

Electric Dipole Polarizability (α_D)

Electric dipole moment

 $p = \alpha_D \times E$

 α_D : electric dipole polarizability

The **restoring force** originates from the **symmetry energy**.

nucleus in a static electric field with fixing the c.m. position

Inversely energy-weighted sum-rule of B(E1)

$$\alpha_D = \frac{8\pi e^2}{9} \int \frac{1}{E_x} \frac{dB(E1)}{E_x}$$

first order perturbation calc. A.B. Migdal: 1944

Nuclear Equation of State (EOS) at zero temperature

Theoretical Models to Connect α_D to the Symmetry Energy

P.-G. Reinhard and W. Nazarewicz, PRC 81, 051303(R) (2010).

Energy Density Functional (EDF) approach using the SV_{min} effective interaction.

X. Roca-Maza et al., PRC88, 024316(2013)

$$S(\rho) = J + \frac{L}{3\rho_0} (\rho - \rho_0) + \dots$$

Precise determination of α_D of ²⁰⁸Pb gives a constraint band in the J-L plane.

Electric Dipole (E1) Response of Nuclei

Coulomb Excitation by Proton Scattering

• Missing mass spectroscopy:

Total strength is measured independently of the decay channels.

- Electromagnetic Probe: the interaction is well known
- Single shot measurement across S_n in $E_x = 5-22$ MeV.
- **High energy resolution** (20-30 keV)
- **Spin observable** & angular distribution → extraction of E1

Research Center for Nuclear Physics (RCNP), Osaka University

AVF Cyclotron Facility

B(E1): continuum and GDR region Method 1: Multipole Decomposition

Neglect of data for Θ >4: (p,p') response too complex

Included E1/M1/E2 or E1/M1/E3 (little difference)

Grazing Angle = 3.0 deg

Comparison between the two methods for the decomposition of E1 and spin-M1

Comparison with (γ, γ') and (γ, xn)

E1 Response of ²⁰⁸Pb and α_D

The full dipole response of ²⁰⁸Pb has been determined.

AT et al., PRL107, 062502(2011)

Electric Dipole Polarizability: ²⁰⁸Pb, ¹²⁰Sn

Constraints on J-L and the n-skin thickness

RCNP ¹²⁰Sn: T. Hashimoto *et al.*, PRC**92**, 031305(R)(2015).

Constraints on J-L and the n-skin thickness

X. Roca-Maza et al., PRC92, 064304(2015)

- **RCNP** ²⁰⁸Pb: AT *et al.*, PRL**107**, 062502 (2011).
- **RCNP** ¹²⁰Sn: T. Hashimoto *et al.*, PRC**92**, 031305(R)(2015).
- **GSI** ⁶⁸Ni: D.M. Rossi *et al.*, PRL**111**, 242503 (2013).

Constraints on J and L

AT et al., EPJA**50**, 28 (2014). M.B. Tsang *et al.*, PRC**86**, 015803 (2012) C.J. Horowitz et al., JPG41, 093001 (2014)

DP: Dipole Polarizability HIC: Heavy Ion Collision PDR: Pygmy Dipole Resonance IAS: Isobaric Analogue State FRDM: Finite Range Droplet

Model (nuclear mass analysis) n-star: Neutron Star Observation χEFT: Chiral Effective Field Theory

QMC: S. Gandolfi, EPJA50, 10(2014).

I. Tews et al., PRL110, 032504 (2013)

Universal Existence of PDR in Nuclei with $A > \sim 90$?

Excess Neutron Oscillation of the PDR

D. Bianco et al., PRC 86 (2012) 044327

Experimental hints on the structure of the PDR

- Universal existence for nuclei with A~90?
- Splitting of the PDR strengths $(\alpha, \alpha') \Leftrightarrow (\gamma, \gamma')$
- Large cross section for surface sensitive probes
- Different angular distribution in (p,p') at forward angle?
- Splitting of PDR in deformed nuclei?
- Larger strength (in TRK) in neutron rich nuclei

II. Spin Magnetic Response of Nuclei

Spin Susceptibility

Inversely energy-weighted sum rule of the spin-M1 strengths

\rightarrow <u>Spin Susceptibility</u>

$$\chi_{\sigma}^{spin} = \frac{8}{3N} \sum_{f} \frac{1}{\omega} \left| \left\langle f \right| \sum_{i} \boldsymbol{\sigma}_{i} \right| 0 \right\rangle^{2}$$

- •magnetic response of nuclear matter (e.g. in a magnetar)
- •v-emissivity
- •v-transportation

Spectrometer Setup for 0-deg (p,p') at RCNP

Self-Conjugate (N=Z) even-even Nuclei

Energy spectra at 0-degrees

IS/IV-spin-M1 distribution

Spin-M1 SNME

H. Matsubara et al., PRL115, 102501 (2015)

- Summed <u>up to 16 MeV</u>.
- Compared with shell-model predictions using the USD interaction

np Spin Correlation Function

H. Matsubara et al., PRL115, 102501 (2015) Shell-Model: USD interaction

np Spin Correlation Function

H. Matsubara et al., PRL115, 102501 (2015) Shell-Model: USD interaction Correlated Gaussian Method: W. Horiuchi Non-Core Shell Model: P. Navratil

ab-initio type calc. with realistic NN int.

Spin Susceptibility

Inversely energy-weighted sum rule of the spin-M1 strengths

$$\chi_{\sigma}^{spin} = \frac{8}{3N} \sum_{f} \frac{1}{\omega} \left| \langle f | \sum_{i} \boldsymbol{\sigma}_{i} | 0 \rangle \right|^{2}$$

Spin Susceptibility of *N*=*Z* Nuclei

А

0.0044(7) MeV⁻¹ at ρ =0.16 fm⁻³

Neutron matter calc. by AFDMC model

G. Shen et al., PRC87, 025802 (2013)

Further theoretical analysis is required.

CAGRA+GR Campaign Exp. From Oct. 2016

LAS at 61 deg

- **1.** Structure of the PDR *1 $(\alpha, \alpha' \gamma)$ and $(p, p' \gamma)$ on ⁵⁸Ni, ^{90,94}Zr, ^{120,124}Sn, ^{206, 208}Pb
- 2. Inelastic v-nucleus response, S. Noji et al.,
- 3. Super-deformed states, high-spin states, D. Jenkins et al.,
- *1 A. Bracco, F. Crespi, V. Derya, M.N. Harakeh, T. Hashimoto, C. Iwamoto, P. von Neumann-Cosel, N. Pietralla, D. Savran, A. Tamii, V. Werner, and A. Zilges *et al.*

Summary

• The electric dipole response of nuclei is one of the fundamental properties nuclei.

A constraint band has been obtained for the symmetry energy parameters from the measured electric dipole polarizability.

• Spin magnetic response of nuclei has been measured for N=Z even even nuclei in the sd-shell.

The IS spin excitation strength is not quenching while the IV spin excitation strength is quenching 0.2 (a) as the Gamow-Teller strength.

