International Workshop on Neutrino Nuclear Responses for Double Beta Decays and Astro-Neutrino Interactions (NNR16), September 29-30, 2016, RCNP, Osaka University

Photonuclear Reactions and Astronuclear Physics

Hiroaki Utsunomiya (Konan University)

Contents
1. 9Be(γ,n)8Be
2. (γ,n) vs (n,γ) reactions
3. IAEA-CRP
4. ELI-NP

The nuclear physics needs for nucleosynthesis processes

S. Goriely PL002

Global Approaches to Strong, Weak and Electromagnetic Interactions

Need for a Universal Global and Microscopic description

S. Goriely PL002

NewSUBARU Facility

SPring8 8 GeV storage ring

8 GeV linac

NewSUBARU 0.5 – 1.5 GeV storage ring

NewSUBARU facility

Laser Compton scattering γ -ray beam

Revisiting photodisintegration of ⁹Be

$\alpha \alpha \rightleftharpoons^{8} Be(n, \gamma)^{9} Be vs {}^{9} Be(\gamma, n)^{8} Be$

Reciprocity Theorem

H. Utsunomiya et al., PRC 63 (2001) C.W. Arnold et al., PRC 85 (2012)

Significance of the $\frac{1}{2}$ state just above $S_n = 1.665 \text{ MeV}$

1. Explosive nucleosynthesis

Type-II supernovae, neutron star mergers

2. Stau-catalyzed big bang nucleosynthesis

Photodisintegration of ⁹Be through the 1/2⁺ state and cluster dipole resonance

H. Utsunomiya,^{1,2} S. Katayama,¹ I. Gheorghe,^{3,4} S. Imai,¹ H. Yamaguchi,² D. Kahl,² Y. Sakaguchi,² T. Shima,⁵ K. Takahisa,⁵ and S. Miyamoto⁶

Comparisons

½+ state	Present	Arnold (2012)	Utsunomiya (2001) Sumiyoshi (2002)
Peak cross section [mb]	1.35	1.65	1.3
E _R [MeV]	1.728±0.001	1.731±0.002	1.748 ±0.01 1.735 ±0.003
B(E1) ↓ [e²fm²]	0.111±0.004	0.136 ±0.002	0.107±0.007 0.104±0.002
$\Gamma_{\gamma}(eV)$	0.595 ± 0.002	0.738±0.002	0.598 ± 0.004 0.568 ± 0.001
Γ_{n} (keV)	214±7	213±6	283±42 225±12

S-matrix for n-⁸Be scattering

CDR Data

 $\sigma_{CDR}(E)dE = 11.3MeV \cdot mb$

GDR: Lorentzian function CDR: Gaussian function 5/2⁺ state: Breit-Wigner

Cluster dipole sum rule

Y. Alhassid, M. Gai, G.F. Bertsch, Phys. Rev. Lett. 49, 1482 (1982)
H. Sagawa, M. Homma, Phys. Lett. B 251, 17 (1990)
R. De Diego, E. Garrido, A.S. Jensen, D.V. Fedorov, Phys. Rev. C 77, 024001 (2008)

Comparisons

Experimental result ⁹Be

$$\int \sigma_{CDR}(E) dE = 11.3 MeV \cdot mb$$

TRK 133.3 MeV mb

Cluster dipole sum rule ⁸Be+n 13.3 MeV mb $\alpha + \alpha + n$ 13.3 MeV mb (n,γ) and (γ,n) reactions are interconnected through the γ -ray strength function in the statistical model calculation.

Brink Hypothesis $f_{X\lambda}(\varepsilon_{\gamma}) \downarrow \approx f_{X\lambda}(\varepsilon_{\gamma}) \uparrow$

A unified understanding of (γ, n) and (n, γ) cross sections

 γ -ray strength function method

H. Utsunomiya et al., PRC 82, 064610 (2009).

Radiative neutron capture cross section are sensitive to the E1 strength function below the neutron threshold

PHYSICAL REVIEW C 91, 015808 (2015)

(γ,n) cross sections for Sm isotopes

(n,γ) cross sections for Sm isotopes

 γ SF S. Goriely Gogny-HFB D1M+QRPA

(γ,n) cross sections for Nd isotopes

S. Goriely γSF

Gogny-HFB D1M+QRPA Skyrme-HFB BSk7+QRPA

(n,γ) cross sections for Nd isotopes

(n, γ) cross sections for unstable nuclei

¹⁵³Sm 1.93d

Experimental γ SF

Schwengner 1394 Siem R396

Data of (γ, n) , (γ, γ') and particle-gamma coin. (Oslo Method)

¹¹⁷Sn

U. Agvaanluvsan et al., PRL 102 (2009)

⁷⁴Ge

T. Renström et al., PRC 93 (2016)

Databases » ENSDF NuDat 2.5 LiveChart NSR Nuclear Wallet Cards

International Atomic Energy Agency

Nuclear Data Services Provided by the Nuclear Data Section

Coordinated Research Project on Photonuclear Data and Photon Strength Functions

Approved in July 2015; Code F41032; Duration 2016-2020

1st Research Coordination Meeting of the CRP on Updating the Photonuclear Data Library and generating a Reference Database for Photon Strength Functions, 4-8 April 2016, IAEA, Vienna

The 1st Research Coordination Meeting of the CRP was held from **4-8 April 2016**, at the IAEA, Vienna. The meeting discussed the work plans of the CRP participants, and agreed on additional joint actions and assignments that are needed in order to achieve the goals of the CRP.

IAEA-CRP F41032 4 year-project (2016-2020)

Search

Related »

ENSDF Manuals Codes Nuclear Data Sheets

IAEA.org | NDS Mission | About Us | Mirrors: India | China

EXFOR

Go

H. Utsunomiya (Konan University, Japan)

V.V. Varlamov (Moscow State University, Russian

Federation)

- N. Iwamoto (JAEA, Japan)
- Y-S. Cho (KAERI, S. Korea)
- D. Filipescu (IFIN-HH/ELI-NP, Romania)
- R. Xu (CIAE, China)
- R. Schwengner (HZDR, Germany)
- T. Kawano (LANL, USA)
- R. Firestone (University of California, Berkely, USA)

T. Belgya (CER / Hungarian Academy of Sciences, Hungary)

- S. Goriely (Université Libre de Bruxelles, Belgium)
- V. Plujko (Taras Shevchenko National University, Ukraine)
- M. Wiedeking (iThemba LABS, S. Africa)
- S. Siem (University of Oslo, Norway)
- M. Krticka (Charles University in Prague, Czech Rep.)

https://www-nds.iaea.org/CRP-photonuclear/index_1RCM.html

Photonuclear Data Library

IAEA-TECDOC-1178 (2000)

https://www-nds.iaea.org/publications/tecdocs/iaea-tecdoc-1178/

Two major data providers: Lawrence Livermore National Laboratory (USA) Centre d'Etudes Nucleaires de Saclay (France)

In general,

There are long-standing discrepancies between the Livermore and Saclay data of (γ ,xn) cross sections, that cannot be resolved in any systematic way.

PHOENIX* Collaboration for IAEA-CRP F41032

* **Pho**to**e**xcitation and **n**eutron em**i**ssion cross (**x**) sections

Official (IAEA) and Extra Assignments

- (γ,xn) data with x=1-3 for 11 nuclei for updating the photonuclear data library The Konan team: ¹⁹⁷Au, ¹⁸¹Ta, ¹³⁹La, ⁹Be The ELI-NP team: ²⁰⁹Bi, ¹⁶⁹Tm, ¹⁶⁵Ho, ¹⁵⁹Tb The MSU team: ¹⁰³Rh, ⁸⁹Y, ⁵⁹Co
- (γ,n) data for 18 (+4) nuclei for generating a reference database for photon strength functions
 The Konan team: ¹⁶⁰Gd, ¹⁵⁸Gd, ¹⁵⁷Gd, ¹⁵⁶Gd, ⁶⁴Ni, ⁶¹Ni, ⁶⁰Ni, ⁵⁸Ni, ¹³C
 The Oslo team: ²⁰⁵Tl, ²⁰³Tl, ¹⁹²Os, ¹⁸⁵Re, ¹⁸⁴W, ¹⁸³W, ¹⁸²W, ¹³⁸Ba, ¹³⁷Ba, ⁸⁹Y, ⁶⁸Zn, ⁶⁶Zn, ⁶⁴Zn

Nuclei underlined

Time Schedule of PHOENIX Collaboration

2015

Nuclei underlined

(γ,xn) (x=1-3): <u>209Bi, 9Be</u> γSF (γ,n): <u>205Tl, 203Tl, 89Y</u>

2016

(γ,xn) (x=1-3): 197Au, 169Tm, 89Y γSF: <u>192Os, 185Re, 138Ba, 137Ba</u>, 64Ni, <u>61Ni</u>, 60Ni, 58Ni, <u>13C</u>

2017

(γ,xn) (x=1-3): 181Ta, 165Ho, 59Co γSF: 184W, 183W, 182W, 68Zn, 66Zn

2018

(γ,xn) (x=1-3): 159Tb, 139La, 103Rh γSF: 160Gd, 158Gd, 157Gd, 156Gd, 64Zn

Bucharest-Magurele National Physics Institutes

NUCLEAR Tandem accelerators Cyclotrons γ – Irradiator Advanced Detectors Biophysics Environmental Physics Radioisotopes

ELI-NP

ELI-NP

Extreme Light Infrastructure - Nuclear Physics

Lasers Plasma Optoelectronics Material Physics Theoretical Physics Particle Physics

BUCHAREST

rail/road

Analysis and evaluation of photoreaction data 4 - 8 April 2016 1st Research Coordination Meeting of the IAEA CRP

September 2016

ELI-NP - Experimental Building Layout

Gamma Beam System Layout

ELI-GANT – Physics program

Analysis and evaluation of photoreaction data 4 - 8 April 2016 1st Research Coordination Meeting of the IAEA CRP

Instrumentation

High-efficiency 4π neutron detector (ELIGANT-TNH)

P-process nucleosynthesis

Photonuclear reactions play a major role.

C		Natural	
3	Nucleus	abundance	Abundance (10°
	1007	(%)	Anders&Grevess
	1801a	0.012	2.48E-06
	190Pt	0.014	0.00017
	184Os	0.02	0.000122
	156Dy	0.06	0.000221
5 neutron-	120Te	0.09	0.0043
	124Xe	0.09	0.00571
leficient	126Xe	0.09	0.00509
	138La	0.09	0.000409
are isotopes	158Dy	0.1	0.000378
	132Ba	0.101	0.00453
	130Ba	0.106	0.00476
	180W	0.12	0.000173
	168Yb	0.13	0.000322
	162Er	0.14	0.000351
experiments	196Hg	0.15	0.00048
experiments	174Hf	0.16	0.000249
	136Ce	0.185	0.00216
$(100 \text{ m})^{179}$	152Gd	0.2	0.00066
<u>a</u> (ץ, וון ומ	138Ce	0.251	0.00284
	115Sn	0.34	0.0129
1 127.	78Kr	0.35	0.153
	84Sr	0.56	0.132
	114Sn	0.66	0.0252
	74Se	0.89	0.55
mg targets	108Cd	0.89	0.0143
8 8	112Sn	0.97	0.0372
	102Pd	1.02	0.0142
	106Cd	1.25	0.0201
	164Er	1.61	0.00404
	98Ru	1.87	0.035
	144Sm	3.07	0.0008
	113In	4.29	0.0079
	96Ru	5.54	0.103
	94Mo	9.25	0.236

92Mo

14.84

0.378

Si)

Summary

- 1. IAEA-CRP F41032 Nuclear Data project
 - •Updating the photonuclear data library
 - •Generating a reference database for photon strength functions
- 2. Applications of the reciprocity theorem in (γ,n) (γ,p) (γ,α) reactions on light nuclei
- 3. The ELI-NP will open up a new horizon of photonuclear reaction studies for rare isotopes, including the p-process nucleosynthesis.

Collaborators

ULB, Belgium

S. Goriely and his research network

ELI-NP, Romania

D. Filipescu and I. Gheorghe

Lomonosov Moscow State U.

S. Belyshev, K. Stopani, A. Kuznetsov, V. Varlamov U. Oslo, Norway

T. Renstrøm, G. Tveten, A.-C. Larsen, S. Siem

U. Hyogo, Japan

S. Miyamoto, S. Amano

Kyoto U., Japan

H. Ohgaki

JAEA, Japan

F. Kitatani

Texas A&M, USA

Y.-W. Lui

Thank you for your attention!