PROPOSAL FOR EXPERIMENT AT RCNP

15 January 2002

TITLE:
Three Nucleon Force Effects in $n + d$ elastic scattering at 250 MeV

SPOKESPERSON:
Name Yukie Maeda
Institution Department of Physics, University of Tokyo
Title or Position Student (D1)
Address 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Phone number +81-(0)3-5841-4238
FAX number +81-(0)3-5841-7642
E-mail yukie@nucl.phys.s.u-tokyo.ac.jp

EXPERIMENTAL GROUP:
Name Institution Title or Position
Hideyuki Sakai Dep. of Physics, Univ. of Tokyo (P)
Atsushi Tamii Dep. of Physics, Univ. of Tokyo (RA)
Kentaro Yako Dep. of Physics, Univ. of Tokyo (D3)
Kimiko Sekiguchi Dep. of Physics, Univ. of Tokyo (D3)
Michio Hatano Dep. of Physics, Univ. of Tokyo (D1)
Takaaki Saito Dep. of Physics, Univ. of Tokyo (M2)
Nobuyuki Uchigashima Dep. of Physics, Univ. of Tokyo (D1)
Tomoyuki Ishida Dep. of Physics, Univ. of Tokyo (M1)
Kichiji Hatanaka RCNP, Osaka Univ. (P)
Yasuhiro Sakemi RCNP, Osaka Univ. (AP)
Tomotsugu Wakasa RCNP, Osaka Univ. (RA)
Junichi Kamiya RCNP, Osaka Univ. (D2)
Youhei Shimizu RCNP, Osaka Univ. (M2)
Yasuuki Kitamura RCNP, Osaka Univ. (M2)
Hiroyuki Okamura Dep. of Physics, Saitama Univ. (AP)
Kenji Suda Dep. of Physics, Saitama Univ. (D2)
Hiroyuki Kamada Dep. of Physics, Kyushu Institute of Technology (AP)
M.B. Greenfield International Christian Univ. (P)

RUNNING TIME:
Test running time for experiment 4 days
Data runs 11 days

BEAM LINE:
N0 (NTOF + NPOL2)
WS course + LAS

BEAM REQUIREMENTS:
Type of particle p
Beam energy 250 MeV
Beam intensity N0 : 50 nA (after 1/9 pulsing)
WS : 500 nA
Time resolution < 500 ps (FWHM)

BUDGET:
Experimental expenses 5,000,000 yen
Travel plan 500,000 yen
Total 5,500,000 yen

TITLE:
Three Nucleon Force Effects in $n + d$ elastic scattering at 250 MeV

SPOKESPERSON: Yukie Maeda

SUMMARY OF THE PROPOSAL

Three-nucleon force (3NF) effect is one of the hot topics in nuclear physics. Theoretically, we can treat the three nucleon state exactly by solving Faddeev equation with modern nucleon-nucleon (NN) interaction. Therefore 3NF can be estimated by comparing precise experimental results and rigorous Faddeev calculations. Recently it has been found that the differential cross sections of elastic $p + d$ scattering at intermediate energy region can be well reproduced by incorporating 3NF in the Faddeev calculation. Furthermore, precise measurements of not only cross sections but also spin observables have been carrying out in $p + d$ scattering.

However, 3NF effects have been studied by comparing the $p + d$ experimental data with $n + d$ calculations because the inclusion of the Coulomb interaction into the calculation is very difficult. To study 3NF effects in a Coulomb-free system, we have performed the $\vec{n} + d$ elastic measurement at $E_n = 250$ MeV in the backward angular region $\theta_{cm} = 85^\circ - 180^\circ$.

We propose to measure the differential cross sections in $n + d$ elastic scattering at $E_n = 250$ MeV in the forward angular region. The data will be taken in an angular range where the observables are expected to be sensitive more directly to Coulomb force. These data together with the earlier one cover a full angular range and allow us to make a Coulomb free comparison to the Faddeev calculations for the first time at intermediate energy region. In addition to that, we can make a direct data-to-data comparison between this $n + d$ and existing