PROPOSAL FOR EXPERIMENT AT RCNP

26 January 2003

TITLE:

Tensor analyzing powers in dd radiative capture

SPOKESPERSON:

Full name Kenshi SAGARA

Institution Department of Physics, Kyushu University

Title of Position Professor

Address Hakozaki 6-10-1, Higashi-ku, Fukuoka, 812-8581 Japan

Phone number +81-92-642-2546 Fax number +81-92-642-2546

E-mail sagara@kutl.kyushu-u.ac.jp

EXPERIMENTAL GROUP:

Kenshi SAGARA	Department of Physics, Kyushu University	(P)
Tetsuo NORO	Department of Physics, Kyushu University	(P)
Tomotsugu WAKASA	Department of Physics, Kyushu University	(AP)
Takashi KUDOH	Department of Physics, Kyushu University	(M2)
Hitomi OHIRA	Department of Physics, Kyushu University	(M1)
Mizuho TOMIYAMA	Department of Physics, Kyushu University	(M1)
Takashi ISHIDA	Department of Physics, Kyushu University	(D2)
Shun ASAJI	Department of Physics, Kyushu University	(M2)
Yosuke HAGIHARA	Department of Physics, Kyushu University	(M1)
Kichiji HATANAKA	RCNP, Osaka University	(P)
Yasuhiro SAKEMI	RCNP, Osaka University	(AP)
Atsushi TAMII	RCNP, Osaka University	(AP)
Hidetomo YOSHIDA	RCNP, Osaka University	(RA)
Youhei SHIMIZU	RCNP, Osaka University	(D2)
Kunihiro FUJITA	RCNP, Osaka University	(M2)
Yuji TAMESHIGE	RCNP, Osaka University	(M1)

RUNNING TIME:

Installation time without beam	$2 \mathrm{days}$
Development of device	$1 \mathrm{days}$
Test running time for experiment	$1 \mathrm{\ days}$
Data runs	$6 \mathrm{days}$

BEAM LINE: Ring:WS course

BEAM REQUIREMENTS:

Type of particle polarized d Beam energy 200 MeV Beam intensity $\leq 50 \text{ nA}$ Any other requirements horizontal/vertical polarization

BUDGET:

Experimental expenses 500,000 yen (including travel expenses of 400,000 yen)

TITLE:

Tensor analyzing powers in dd radiative capture

SPOKESPERSON: Kenshi SAGARA

SUMMARY OF THE PROPOSAL

In our measurement of $\vec{d} + p \rightarrow^3 \text{He} + \gamma$ reaction at $E_d = 200$ MeV, we found a large discrepancy between the measured A_{xx} and calculated A_{xx} . Recent meson-exchange calculation by Bochum group, calculations in Siegert theorem (long wane-length approximation) and calculation by Hannover group similarly predicted the large discrepancy in A_{xx} . We call the discrepancy as A_{xx} anomaly. There is disagreement also in A_{yy} between the experiment and calculations, but the A_{yy} disagreement is considerably small compared to A_{xx} anomaly.

Last year we made another pd capture experiment at $E_d = 140$ MeV (E206). The present very preliminary data indicate that A_{xx} anomaly does exist also at 140 MeV and disagreement in A_{yy} is small. At also $E_d = 17.5$ MeV we measured analyzing powers of pd capture using a polarized d-beam from Kyushu University tandem accelerator. At this low energy, both A_{xx} and A_{yy} are fairly well agree with calculations. Therefore, A_{xx} anomaly starts from about 50 MeV.

One more curious phenomenon in pd capture is the relation of $A_{xx} \approx A_{yy}$ which holds at 17.5, 140 and 200 MeV. In other d-induced reactions such as (d, d) (in)elastic scatterings, (d, p) reactions, or d + p breakup, we could see the tendency that A_{xx} and A_{yy} have opposite signs, i.e., $A_{xx} \approx -kA_{yy}$ approximately holds with k ranging from about 0.5 to about 2. Why pd capture alone has A_{xx} and A_{yy} of the same sign?

As well known, d is a widely spread nucleus in which p and n are loosely bound. In d-induced scatterings or stripping reactions, the outer part of d may largely contribute. In pd capture reaction, however, d and p make a compact nucleus of 3 He, and only the central part of d may contribute. It is reasonable, therefore, to assume that tensor force at the outer part of d and tensor force at the central part of d are different and have opposite signs to each other. The tensor force at the central part may have connection with 3-nucleon forces. If this assumption is valid, the relation $A_{xx} \approx A_{yy}$ holds also in dd capture reaction because 4 He is a very compact nucleus. This is our motivation of this proposal.

From A_{yy} and A_{zz} data of dd capture at $E_d = 50$ MeV (LBL), we can see that $A_{xx} \approx A_{yy}$ roughly holds. To confirm the $A_{xx} \approx A_{yy}$ relation in dd capture, we need more precise data on A_{xx} and A_{yy} and energy dependence of A_{xx} and A_{yy} .

Recoil ⁴He from dd capture comes out in a laboratory system at forward angles up to 8.5 ° which is larger than the vertical acceptance of LAS. Therefore, we need a horizontally polarized d-beam to measure A_{xx} .