Experiment Proposal at RCNP using WS course and Grand Raiden, 01/27/2004 Resonance States in Proton Rich ⁴²Ti and ⁴⁶Cr Nuclei and Reaction Rates in the rp-Process.

Spokespersons: G.P.A. Berg

Kernfysisch Versneller Intituut, 9747 AA Groningen, The Netherlands

Ph: 31-50-363-3558, FAX: 31-50-363-4003, E-Mail: gpberg@kvi.nl

K. Hatanaka

Research Center for Nuclear Physics, Osaka Univ., Osaka 567-0047, Japan

Ph: 81-06-6879-8928,FAX: 81-06-6879-8899,E-Mail:hatanaka@rcnp.osaka-u.ac.jp

M. Wiescher

University of Notre Dame, Notre Dame, IN 46556, USA

Ph: 001-219-631-6788, FAX: 001-219-631-5952, E-Mail: wiescher.1@nd.edu

Experimental Group: T. Adachi, D2, Dept. of Physics, Osaka Univ., Japan

- A. Bacher, Professor, IUCF, Indiana Univ., Bloomington, IN, USA
- A. van den Berg, Research Physicist, KVI, Groningen, The Netherlands
- G.P.A. Berg, Senior Physicist, KVI, Groningen, The Netherlands
- C.C. Foster, Research Physicist, Foster Consulting Services L.L.C., USA
- Y. Fujita, Associate Professor, Dept. of Physics, Osaka Univ., Japan
- H. Fujita, Research Fellow, WITS, Univ. of South Africa
- K. Fujita, D1, RCNP, Osaka Univ., Japan
- J. Görres, Research Professor, Univ. of Notre Dame, USA
- K. Hatanaka, Professor, RCNP, Osaka Univ., Japan
- S. Kubono, Professor, CNS, Univ. of Tokyo, Japan
- H. Schatz, Associate Professor, Michigan State Univ., USA
- Y. Sakemi, Associate Professor, RCNP. Osaka University, Japan
- Y. Shimbara, Research Fellow, Dept. of Physics, Osaka Univ., Japan
- Y. Shimizu, D2, RCNP, Osaka Univ., Japan
- Y. Tageshige, M2, RCNP, Osaka Univ., Japan
- A. Tamii, Associate Professor, RCNP, Osaka Univ., Japan
- T. Wakasa, Associate Professor, Kyushu Univ., Japan
- M. Wiescher, Professor, Univ. of Notre Dame, USA
- H. Wörtche, Research Physicist, KVI, Groningen, The Netherlands
- M. Yosoi, Research Associate, RCNP, Osaka Univ., Japan

Running Time: A total of 10 days running time is requested of which 3 days are needed for cyclotron optimization (momentum spread) beam line matching, spectrometer setup, and 7 days for production and calibration measurements.

Beam Line: Dispersive WS beam line and Grand Raiden Spectrometer in 0° mode.

Beam Requirements: ⁴He of 206 MeV, minimum current 150 pnA, energy spread < 100 keV, single turn halo-free, fully dispersion matched.

Special Equipment required: Existing GR ⁴He-stop for ⁸He reaction products in D1, and 1, 10 and 6 mm thin plastic detectors for Δ -E, E and veto signals.

Budget: Targets to be purchased ⁴⁶Ti, ⁵⁰Cr, and ¹³C, 2 mg/cm² thick: 0.5 MYen

1 Summary of the Proposal

- **Proposed experiment:** Measurements of (⁴He, ⁸He) on ⁴⁶Ti and ⁵⁰Cr targets with astrophysical motivation are proposed using the WS course and GR. GR will be used in a 0° mode with a specially designed Faraday cup inside dipole D1. After several development runs and successful experiments using the (⁴He, ⁶He) reaction and the development of a high intensity ⁴He beam of > 150 pnA the feasibility of the (⁴He, ⁸He) reaction is now established.
- Targets: The targets of astrophysical interest are ⁴⁶Ti and ⁵⁰Cr. A ¹³C target with a relatively large (⁴He, ⁸He) cross section will be used for energy calibration. Target thicknesses of about 2 mg/cm² will be used, a compromise of count rate and good resolution requirements.

• Apparatus and Beam Properties:

The WS course in dispersive mode and the Grand Raiden spectrometer with the standard VDC focal plane detector system will be used. A stack of 1 mm, 10mm, 6 mm thick ΔE plastic scintillator will provide energy loss and timing signals for particle identification in the first two detectors for ⁶He and ⁸He particles. The ⁴He and lighter particles will pass through the first two detectors and provide a veto signal in the third, 6 mm thick detector.

- Beam time request: The total beam time request of 10 days will be used as follows:
- a) 3 days for beam preparation, detector verifications, ion-optical setup and full dispersion matching for the (⁴He, ⁸He) reaction.
- b) 1 day of ¹³C(⁴He, ⁸He) ⁹C and (⁴He, ⁶He) reactions of selected targets for energy calibration. (300 events/day in g.s.)
- c) 3 days for measurements on ⁴⁶Ti(⁴He, ⁸He)⁴²Ti. Expected counts for the g.s. is about 100 events/day, excited states: 20 events/day
 - d) 3 days for measurements on ${}^{50}\mathrm{Cr}({}^{4}\mathrm{He}, {}^{8}\mathrm{He}){}^{46}\mathrm{Cr}$.