PROPOSAL FOR EXPERIMENT AT RCNP

27 January 2004

TITLE:

Precise measurement of alignment correlation term of ¹³B

SPOKESPERSON:

Full Name Kensaku Matsuta

Institution Department of Physics, Osaka University

Title or Position Associate Professor

Address Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan

Phone number +81-6-6850-5520 FAX number +81-6-6850-5535

E-mail matsuta@vg.phys.sci.osaka-u.ac.jp

Full Name Mototsugu Mihara

Institution Department of Physics, Osaka University

Title or Position Research Associate

Address Machikaneyama 1-1, Toyonaka, Osaka 560-0043, Japan

Phone number +81-6-6850-5520 FAX number +81-6-6850-5535

E-mail mihara@vg.phys.sci.osaka-u.ac.jp

EXPERIMENTAL GROUP:

Full Name	Institution	Title or Position
Kensaku Matsuta	Department of Physics, Osaka University	Associate Professor
Mototsugu Mihara	Department of Physics, Osaka University	Research Associate
Tadanori Minamisono	Department of Physics, Osaka University	Professor
Mitsunori Fukuda	Department of Physics, Osaka University	Associate Professor
Hideaki Izumi	Department of Physics, Osaka University	Associate Professor
Tadashi Shimoda	Department of Physics, Osaka University	Professor
Kei Minamisono	TRIUMF	Ph.D
Takashi Nagatomo	Department of Physics, Osaka University	D3
Masako Ogura	Department of Physics, Osaka University	D3
Hiroki Fujiwara	Department of Physics, Osaka University	M2
Shin-ichi Kumashiro	Department of Physics, Osaka University	M2

RUNNING TIME: Data runs 8 days

(Total Beam Time 8 days)

BEAM LINE: Ring: EN course

BEAM REQUIREMENTS: Type of particle

BEAM REQUIREMENTS: Type of particle

Roam energy 70 MeV per nucleon

Beam energy 70 MeV per nucleon Beam intensity $\sim 6 \text{ pnA}$

BUDGET: We need enriched ¹⁵N gas.

TITLE:

Precise measurement of alignment correlation term of ¹³B

SPOKESPERSON: Kensaku Matsuta and Mototsugu Mihara

SUMMARY OF THE PROPOSAL

A set of alignment correlation terms in β -ray angular distribution of T=3/2mirror pair ¹³B ($I^{\pi} = 3/2^{-}, T_{1/2} = 17.36$ ms) and ¹³O($I^{\pi} = 3/2^{-}, T_{1/2} = 8.9$ ms) is one of the best candidates to examine the G-parity conservation law in the weak interaction. As a first step forward the final goal, we propose the measurement of the alignment correlation term for ¹³B within the statistical error 0.02%/MeV. The induced tensor term f_T , which is obtained from the difference between the alignment correlation coefficients of the mirror pair, is a G-parity breaking term in the weak nucleon axial vector current. The f_T may have a finite value caused by the difference between the masses of u and d quarks, e.g. $2Mf_T/f_A \sim \frac{m_u - m_d}{M} \sim 0.004$, which is predicted by the QCD-sum rule. It is so small that we have to take account of higher order effects such as the meson exchange effects and the off-mass-sh! ell effect, so the observable obtained from this measurement is described as $L\lambda + \zeta$ in KDR model instead of just $\zeta = f_T + f_T'$, where L is the matrix element depending on nucleus. In order to know both λ and ζ , systematic studies on several mass-number systems are necessary, and A = 8, 12, 13 and 20 systems are good candidates. Among them, A = 13 system is the most promising one, because the L in A=13 is the smallest and the observable directly represents the G-parity breaking induced tensor term.

We had already established all necessary techniques for the experiment, e.g. the studies of the nuclear moments, the hyperfine interactions in a single crystal which used as a stopper and the spin manipulation to convert the nuclear polarization to alignment. So we can start the measurement very soon.