SYNTHESIS OF SUPER-HEAVY ELEMENTS, WHAT CAN WE PREDICT?

David Boilley GANIL and Normandie Université

GANIL-SPIRAL2

Applications

Hongliang LÜ (吕宏亮) and Bartholomé CAUCHOIS

GANIL and Normandie Université/Unicaen

Yasuhisa ABE (阿部恭久) RCNP, Osaka (大阪大学核物理研究センター) Caiwan SHEN (沈彩万) Huzhou University (湖州师范学院)

Anthony MARCHIX CEA/DRF/IRFU Saclay Michał Kowal NCBJ (Warsaw) Guy Royer Subatech and Univ. de Nantes

What is the heaviest element?

Size of atoms is limited. Why?
Chemistry: Zmax=172
Nucleus: Zmax=?

Liquid Drop Model: no fission barrier
 Extra stability from the shell closure

Shell energy correction

Shell correction energy

one end of nuclear chart 2010

Latest periodic table

1	_				1	UPAC	Period	dic Tak	ble of	the Ele	ement	S					18
1 H hydrogen																	2 He helium
[1.0078, 1.0082]	2		Key:									13	14	15	16	17	4.0026
3 Li lithium 6.94 (6.938, 6.997)	4 Be beryllium		atomic num Symbo name conventional atomic v standard atomic v	ber DI								5 B boron 10.81 [10.806, 10.821]	6 C carbon 12.011 [12.009, 12.012]	7 N nitrogen 14.007 [14.006, 14.008]	8 O oxygen 15.999 [15.999, 16,000]	9 F fluorine 18.998	10 Ne neon 20,180
11 Na sodium	12 Mg magnesium ^{24,305}	3	4	5	6	7	8	9	10	11	12	13 Al aluminium	14 Si silicon 28.085	15 P phosphorus	16 S sulfur ^{32.06}	17 CI chlorine 35.45 (35.46, 35.457)	18 Ar argon
19 K potassium	20 Ca calcium 40.078(4)	21 Sc scandium	22 Ti titanium 47.867	23 V vanadium	24 Cr chromium	25 Mn manganese	26 Fe iron	27 Co cobalt	28 Ni nickel	29 Cu copper 63 546(3)	30 Zn zinc	31 Ga gallium	32 Ge germanium 72 630(8)	33 AS arsenic 74.922	34 Se selenium 78.971(8)	35 Br bromine 79.904 [79.901 79.907]	36 Kr krypton 83 798(2)
37 Rb rubidium	38 Sr strontium	39 Y yttrium	40 Zr zirconium	41 Nb niobium	42 Mo molybdenum	43 Tc technetium	44 Ru ruthenium	45 Rh rhodium	46 Pd palladium	47 Ag silver	48 Cd cadmium	49 In indium	50 Sn tin	51 Sb antimony	52 Te tellurium	53 iodine	54 Xe xenon
55 Cs caesium	56 Ba barium	57-71 lanthanoids	72 Hf hafnium	73 Ta tantalum	74 W tungsten	75 Re rhenium	76 OS osmium	77 Ir iridium	78 Pt platinum	79 Au gold	80 Hg mercury 200.59	81 TI thallium 204.38	82 Pb lead	83 Bi bismuth	84 Po polonium	85 At astatine	86 Rn radon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 Hs hassium	109 Mt meitnerium	110 DS darmstadtium	111 Rg roentgenium	112 Cn copernicium	113 Nh nihonium	114 FI flerovium	115 Mc moscovium	116 Lv livermorium	117 Ts tennessine	118 Og oganesson

	57 La Ianthanum 138.91	58 Ce cerium 140.12	59 Pr praseodymium 140.91	60 Nd neodymium 144.24	61 Pm promethium	62 Sm samarium 150.36(2)	63 Eu europium 151.96	64 Gd gadolinium 157.25(3)	65 Tb terbium 158.93	66 Dy dysprosium 162.50	67 Ho holmium 164.93	68 Er erbium 167.26	69 Tm thulium 168.93	70 Yb ytterbium 173.05	71 Lu lutetium 174.97
INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY	89 Ac actinium	90 Th thorium 232.04	91 Pa protactinium 231.04	92 U uranium 238.03	93 Np neptunium	94 Pu plutonium	95 Am americium	96 Cm curium	97 Bk berkelium	98 Cf californium	99 Es einsteinium	100 Fm fermium	101 Md mendelevium	102 No nobelium	103 Lr Iawrencium

For notes and updates to this table, see www.iupac.org. This version is dated 28 November 2016. Copyright © 2016 IUPAC, the International Union of Pure and Applied Chemistry.

Yuri Oganessian. "Synthesis of SH-nuclei" FUSHE 2012, May14, 2012, Weilrod, Germany

Questions for theoreticians

□ Can we guide the experiments?

Difficulties

Models cannot be extrapolated from lighter systems

Fusion hindrance

Extremely low cross sections

Few data with few information

Residue cross sections

Reaction to form SHE

22

Synthesis of SHE in fusion reactions (conventional view)

Fusion by diffusion

- What is the initial condition?
- □ N-dimension problem
- Fast variables are eliminated after a short time τ
- Slow variables start at with a slipped initial condition

Y. Abe, D. B., B.G. Giraud and T. Wada, Phys. Rev. E61, 1125 (2000)D. B., Y. Abe and JD Bao, Eur. Phys. J. A18, 627 (2003)

Example

□ Langevin: $\ddot{q} + \beta \dot{q} - \omega^2 q = r(t)$ □ Smoluchowski: $\beta \dot{q} - \omega^2 q = r(t)$ $\beta \gg \omega^2$

Fluctuation-dissipation:
$$\langle r(t)r(t')\rangle = \frac{2T\beta}{m}\delta(t-t')$$

 $\square \text{ Elimination of fast variable} => q(\tau) = q_0 + \frac{q_0}{\beta}$

Test

Test

Test

Phenomelogical shift

Cold fusion (PRC.83. 054602)

Hot fusion (PRC.86. 014611)

Can we assess hindrance?

Despite correctly predicting σ_{EVR} correctly, the values of P_{CN} (and W_{sur})differ significantly

One – two orders of magnitude!

Naik, Loveland et al, Phys. Rev. C 76, 054604

What's the problem?

The best known part has the same discrepancies as the less known part!

Uncertainty analysis

Stretegy

- The best known part has the same discrepancies as the less known part!
- □ Is it due to uncertainties?

$$\sigma_{1n} = \sigma_{cap} \times P_{CN} \times P_{sur}$$

$$P_{CN} = \frac{\sigma_{1n}}{\sigma_{cap} \times P_{sur}}$$
Experiments
Models

Experimental uncertainties

Survival probability

$$P_{sur} = \frac{\Gamma_n}{\Gamma_n + \Gamma_f}$$

$$\Box \mathbf{B}_{\mathbf{f}} < \mathbf{B}_{\mathbf{n}} = > \text{Fission dominates:}$$

- Parameters entering the fission width have a great influence
- Fission barrier is most sensitive parameter
- Nuisance parameters:
 - **Damping energy:** 11 < Ed < 19 MeV
 - Friction coefficient: $1 < \beta < 5 \text{ zs}^{-1}$

KEWPIE2: A cascade code for the study of dynamical decay of excited nuclei*

Ho

GUM 1995 with minor corrections

JCGM 100:2008

Evaluation of measurement data — Guide to the expression of uncertainty in measurement

Évaluation des données de mesure — Guide pour l'expression de l'incertitude de mesure

Nuisance parameters

Fission barriers

□ In the past:

$$Bf \approx B_{LDM} - \Delta E_{shell}$$

- □ Nowadays:
 - Tables: Moller et al, M. Kowal et al... : differ by few MeV's

Fission barriers (MeV)

Same shell correction energy

Reaction	Möller	lvanyuk
208Pb(50Ti ,1 n)257Rf	5.65	4.47
208Pb(54Cr,1n)261Sg	5.91	4.57
208Pb(58Fe ,1 n)265Hs	6.26	5.22

Various models

Summary

Partial conclusions

How accurate can be the predictions?

Fusion-by-diffusion model

Survival probability

□ Cold fusion (1n)

$$P_{sur} = \frac{\Gamma_n}{\Gamma_n + \Gamma_f}$$

 $\Box \ \Gamma_n \text{ depends on } S_n$ $\Box \ \Gamma_f \text{ depends on } B_f$

=> We shall start our study with masses

Experimental data = theory + errors

\square : AME2016 with Z,N>8 and u<150 keV

SCE + Pairing: Thomas Fermi – no uncertainties

Myers and Swiatecki 1994

□ LDM: linear equation

G. Royer (NPA917, 1 (2013))

Least squares

LDM: results

$$B_{Th,i}^{\prime} = \left(p_{1} + p_{2}I_{i}^{2}\right)A_{i} + \left(p_{3} + p_{4}I_{i}^{2}\right)A_{i}^{\frac{2}{3}} + p_{5}\frac{Z_{i}^{2}}{A_{i}^{\frac{1}{3}}} + p_{6}\frac{Z_{i}^{2}}{A_{i}} + p_{7}\left|N_{i} - Z_{i}\right|e^{-\left(\frac{A_{i}}{50}\right)^{2}} + p_{8}e^{-80I_{i}^{2}}$$

	p̂ [MeV]	$\hat{u}(\hat{p})[MeV]$	$ \hat{u}(\hat{p})/\hat{p} $ [%]
\hat{p}_1	15.4829	0.0145	0.1
₿₂	-27.8219	0.0843	0.3
ρ̂ ₃	-17.5783	0.0505	0.3
₿₄	31.1447	0.3797	1.2
₿₅	-0.7058	0.0008	0.1
₿ ₆	0.9251	0.0288	3.1
₿ ₇	-0.2942	0.0293	10.0
₿	2.7265	0.1693	6.2

 $u(\hat{p}) \propto \hat{\sigma}$

Correlation matrix

Errors or residuals

Estimated binding energies

Ζ

$$\square$$
 $\upsilon(B_f) = 0.5$ MeV; $\upsilon(\beta)$; $\upsilon(Ed)...$

At best, we can hope an accuracy of one order of magnitude in the survival probability.

Capture model

$$\Box \sigma_{cap} = \pi R^2 \left(1 - \frac{B_C}{E_{cm}} \right) \text{ with Gaussian barrier}$$

distribution

- Adjusted parameters:
 - Coulomb barrier
 - Radius
 - Width of the barrier distribution
- □ 48 reactions used in the fit

Parameters of the barrier distribution

Uncertainties in capture

$$^{208}Pb+^{50}Ti ->^{257}Rf+1n @ E_{cm}=185 MeV$$

$$\Box \sigma_{exp} = (10.419 \pm 1.3) \text{ nb}$$

$$\Box \sigma_{cap} = (0.43 \pm 0.11) \text{ mb}$$

$$\square P_{sur} = 0.089 \pm 0.072$$

No hope to get better than 1 order of magnitude accuracy

Conclusions and perspectives

- 59
- □ How to assess models? Especially fusion hindrance?
- The fission-barrier height plays an important role in fusionevaporation reaction calculations.
- Further effort will concentrate on a more consistent description of the whole process including uncertainties
- □ New strategies to constrain fusion hindrance
- □ No hope to get better accuracy than an order of magnitude

Thank you for your attention !