# 原子核結合エネルギーに対する 低運動量相互作用の切断運動量依存性

藤井 新一郎 (東大理) 鎌田 裕之 (九エ大エ) 岡本 良治 (九エ大エ) 鈴木 賢二 (九エ大エ)

### 1. はじめに

- ・現実的核力から導かれる低運動量相互作用(V<sub>low-k</sub>)
- *V*<sub>low-k</sub>を用いた最近の構造計算
- **2.** ユニタリー変換による*V*<sub>low-k</sub>の導出
- **3.** *V*<sub>low-*k*</sub>を用いた結合エネルギーの計算結果
  - <sup>3</sup>H, <sup>4</sup>He ··· Faddeev-Yakubovsky
  - ${}^{16}O({}^{15}N, {}^{15}O, {}^{17}F, {}^{17}O) \cdots UMOA$

4. まとめ

RCNP研究会「核力と核構造」 2004年3月22-24日,大阪大学RCNP



### **Derivation of effective interaction (Hamiltonian) by means of unitary transformation**

#### Hamiltonian

 $H = H_0 + V$ 

#### Unitary transformation of H

$$\widetilde{H} = U^{-1}HU$$
  
 $U = e^{S}$ , (S : anti-Hermitian,  $S^{\dagger} = -S$ )

#### **Decoupling equation**

 $Q(e^{-S}He^{-S})P = 0$ 

#### Solution

 $S = \operatorname{arctanh}(\omega - \omega^{\dagger}), \ \omega = Q\omega P$ (with the restrictive condition PSP = QSQ = 0) K. Suzuki, Prog. Theor. Phys. **68** (1982), 246

| Effective Hamiltonian           | Effective interaction                       |
|---------------------------------|---------------------------------------------|
| $H_{\rm eff} = P\widetilde{H}P$ | $V_{\rm eff} = P \widetilde{H} P - P H_0 P$ |

#### Unitary transformation operator U in terms of $\boldsymbol{\omega}$

$$U = (1 + \omega - \omega^{\dagger})(1 + \omega^{\dagger}\omega + \omega\omega^{\dagger})^{-1/2}$$
  
=  $\begin{pmatrix} P(1 + \omega^{\dagger}\omega)^{-1/2}P & -P\omega^{\dagger}(1 + \omega\omega^{\dagger})^{-1/2}Q \\ Q\omega(1 + \omega^{\dagger}\omega)^{-1/2}P & Q(1 + \omega\omega^{\dagger})^{-1/2}Q \end{pmatrix}$   
S. Ōkubo, Prog. Theor. Phys. **12** (1954), 603



| Accuracy                          | y of low-m | noment      | um intera | ctions                      |
|-----------------------------------|------------|-------------|-----------|-----------------------------|
|                                   | Deutero    | n prope     | rties     |                             |
|                                   | CD Bo      | uu          | Nijm      | Ι                           |
| $\Lambda_{\rm cut}({ m fm}^{-1})$ | BE(MeV)    | $P_{D}(\%)$ | BE(MeV)   | $\mathrm{P}_\mathrm{D}(\%)$ |
| 1.0                               | 2.224576   | 1.212       | 2.224575  | 1.236                       |
| 2.0                               | 2.224576   | 3.549       | 2.224575  | 3.828                       |
| 3.0                               | 2.224576   | 4.546       | 2.224575  | 5.119                       |
| 4.0                               | 2.224576   | 4.789       | 2.224575  | 5.532                       |
| 5.0                               | 2.224576   | 4.830       | 2.224575  | 5.639                       |
| 6.0                               | 2.224576   | 4.834       | 2.224575  | 5.661                       |
| 7.0                               | 2.224576   | 4.833       | 2.224575  | 5.664                       |
| quoted                            | 2.224575   | 4.83        | 2.224575  | 5.664                       |













Single-particle energies for hole states in <sup>16</sup>O

## Summary

- Low-momentum interactions were derived from realistic nucleon-nucleon interactions through a unitary transformation which has also been used in the unitary-model-operator approach (UMOA), the no-core shell model (NCSM), and the effective-interaction hyperspherical harmonics (EIHH).
- The low-momentum interactions obtained have high accuracy numerically, which was confirmed by the calculations of the deuteron binding energy.
- The low-momentum interactions were successfully applied to the Faddeev-Yakubovsky calculations for three- and fournucleon systems.
- The calculated ground-state energies of the few-nucleon systems using the low-momentum interactions vary considerably at  $\Lambda < 4 \sim 5 \text{ fm}^{-1}$ , and there occurs the energy minimum at  $\Lambda = 1 \sim 2 \text{ fm}^{-1}$ .
- A similar tendency of the energy curve was obtained also in the calculations for <sup>16</sup>O. However, the magnitudes of relative spacings of single-particle levels are not so changed in the area Λ > 2 fm<sup>-1</sup>.
- The low-momentum interaction should be used with care especially in calculations of the total binding energy though the low-momentum interaction would be very useful in structure calculations as has been shown in shell-model calculations.