Tensor correlation in neutron halo nuclei

Takayuki Myo RCNP, Osaka Univ.
Kiyoshi Katō Hokkaido Univ.
Kiyomi Ikeda RIKEN

RCNP Workshop / 2004.3.24
• Contents

 ○ **Tensor Correlation** for s-wave problem in $^{10,11}\text{Li}$ (cf. pairing).
 - Occurance of Halo structure in ^{11}Li ($N=8$).
 - Inversion problem in ^{10}Li ($N=7$).

 ○ Model: $^9\text{Li}+n+n$ with **Tensor correlation in ^9Li**.

 Analogy: $^4\text{He}+n+n$ of ^6He.

 ○ Results: 1. ^4He with tensor correlation using Shell Model basis.
 2. ^5He with $^4\text{He}+n$ ($3/2^--1/2^-$ splitting).
 3. Effective Interaction.
 4. ^8He with tensor and p-shell pairing correlations.
- Description of Halo nuclei based on the "core+n+n" model

 - ^6He: Successful results for G.S. without core excitation.

 - ^{11}Li: Ambiguity in ^9Li-n interaction.
 - ^9Li: $(0p_{3/2})_\nu$ -closed \rightarrow Underbinding.
 - ^9Li: p-shell pairing correlation for neutron
 - Inversion phenomena in ^{10}Li.
 - p-shell closed configuration in ^{11}Li.

 - Effect of tensor correlation
 - ^9Li: pairing corr. + tensor corr.
 - Degeneracy of p- and s-orbitals in both $^{10,11}\text{Li}$?
 - Inversion phenomena in $N=7$, halo production

[Ref]: K.Katō, K.Ikeda, PTP89('93)623.
T.Myo, S.Aoyama, K.Katō, K.Ikeda, PTP108('02)133.
• Tensor correlation in 4He and 9Li core

- 4He -

0p $\cdots \cdots \Leftrightarrow V_T$

0s $\begin{array}{c}
\pi \\
(0s)^4
\end{array}$

$\langle V_T \rangle$ (3E) is large (comparable to $\langle V_C \rangle$)

2p-2h excitation from $(0s)^4$

P[D] ~ 10-13%

- 9Li -

$\begin{array}{c}
\pi \\
(0s)^2(0p)^2
\end{array}$

$\begin{array}{c}
\nu \\
\nu
\end{array}$

$\begin{array}{c}
1s_{1/2} \\
0p_{1/2} \\
0p_{3/2} \\
0s_{1/2}
\end{array}$

$\begin{array}{c}
\pi \\
\nu
\end{array}$

Lowest Pairing

Pairing

Tensor

H. Kamada et. al, PRC64(2001)044001
Effect of Tensor Correlation in 11Li

- **Energy Gain**
- **Pauli Blocking**
- **Tensor Pairing**
- **Pairing + Tensor**
Model to incorporate the tensor correlation

- Criterion: \(^4\text{He} \ (P[D] \sim 10-13\%)
 - Extension of Terasawa, Nagata’s works \(^5\text{He};\text{LS splitting}\)
 - Application to \(^6\text{He} = ^4\text{He}(\ast) + n + n\).
 \(\Rightarrow\) Review of Halo mechanism, Resonance structures.

- Wave Function for core part \((^4\text{He}, \ ^9\text{Li})\)
 - H.O.basis with different length parameters \(\{b_i\}\), such as \(b_{0s} \neq b_{0p}\) \(\ldots\)
 to include the higher shell effect.
 - for \(^4\text{He}, 0s_{1/2} + 0p_{1/2} + 0p_{3/2}\) up to \(2p-2h\).

\(\Phi(^4\text{He}) = \Sigma_\alpha C_\alpha \psi_\alpha(\{b_i\}) = C_1 \ (0s)^4 + C_2 \ (0s)^2 (0p_{1/2})^2 + \cdots\)

- \(\frac{\partial \langle H - E \rangle}{\partial b_i} = 0\), \(\frac{\partial \langle H - E \rangle}{\partial C_\alpha} = 0\)
○ Interaction :
 – Central : \textbf{Volkov No.2 with M=0.6}
 – Tensor : \textbf{Furutani} \ (^{3}\text{He}+p \text{ scattering})
 – LS : \textbf{G3RS}

[Ref]: H. Furutani, H. Horiuchi, R. Tamagaki, PTP62(’79)981
\(^4\text{He G.S.}(0^+) \) with V2+Furu+G3RS

- **Amplitudes with** \(b_0p_{1/2} = b_0p_{3/2} = 0.8 \text{ fm} \)

<table>
<thead>
<tr>
<th>Term</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>((0s_{1/2})^4)</td>
<td>94.6 %</td>
</tr>
<tr>
<td>((0s_{1/2})^2(0p_{1/2})^2) ((JT)=(10))</td>
<td>4.5 %</td>
</tr>
<tr>
<td>((0s_{1/2})^2(0p_{3/2})^2)</td>
<td>0.3 %</td>
</tr>
<tr>
<td>((0s_{1/2})^2(0p_{1/2})(0p_{3/2}))</td>
<td>0.6 %</td>
</tr>
<tr>
<td>(P[D])</td>
<td>3.4 %</td>
</tr>
</tbody>
</table>

- \(0^- \) coupling between \(0s_{1/2} \) and \(0p_{1/2} \)

\(\Rightarrow \) pion nature
- Coupling Matrix Element of Tensor force

\[\langle (0s_{1/2})^2_1 (0p_{1/2})^2_1 | V | (0s)^4 \rangle \quad (b_{0s}=1.4 \text{ [fm]}) \]

Coupling from Tensor force is significant with a small \(b_{0p} \).
$^4\text{He G.S.}(0^+) \text{ with V2+Furu.} + \text{G3RS}$

- 3E part of Central force is adjusted to reproduce the B.E. of ^4He (28.3 MeV).

<table>
<thead>
<tr>
<th>b_{0p} [fm]</th>
<th>2.0</th>
<th>1.4 (= b_{0s})</th>
<th>0.8</th>
<th>$(V_T \times 1.5)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\langle\text{Kinetic}\rangle$ [MeV]</td>
<td>45.8</td>
<td>49.5</td>
<td>52.7</td>
<td>58.0</td>
</tr>
<tr>
<td>$\langle\text{Central}\rangle$</td>
<td>-74.3</td>
<td>-73.4</td>
<td>-66.0</td>
<td>-53.8</td>
</tr>
<tr>
<td>$\langle\text{Tensor}\rangle$</td>
<td>-0.6</td>
<td>-5.2</td>
<td>-16.4</td>
<td>-34.3</td>
</tr>
<tr>
<td>$\langle\text{LS}\rangle$</td>
<td>2×10^{-3}</td>
<td>1×10^{-4}</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>R_m [fm]</td>
<td>1.52</td>
<td>1.48</td>
<td>1.48</td>
<td>1.48</td>
</tr>
<tr>
<td>2p-2h [%]</td>
<td>1.6</td>
<td>4.1</td>
<td>5.4</td>
<td>11.0</td>
</tr>
<tr>
<td>$(0p_{1/2})^2_{JT} \ (JT)=(10)$</td>
<td>0.6</td>
<td>2.9</td>
<td>4.5</td>
<td>9.6</td>
</tr>
<tr>
<td>$(0p_{1/2})^2_{JT} \ (JT)=(01)$</td>
<td>0.1</td>
<td>0.1</td>
<td>3×10^{-2}</td>
<td>0.1</td>
</tr>
<tr>
<td>$(0p_{3/2})^2$</td>
<td>0.8</td>
<td>0.2</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>$(0p_{1/2})(0p_{3/2})$</td>
<td>6×10^{-2}</td>
<td>0.9</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>$P[D]$ [%]</td>
<td>0.5</td>
<td>2.3</td>
<td>3.4</td>
<td>7.2</td>
</tr>
</tbody>
</table>

Tensor force can be incorporated.
- $3/2^--1/2^-$ splitting in ^5He with $^4\text{He}+n$ (Preliminary)

\[^4\text{He}[2\text{p}-2\text{h}] + n(p_{3/2,1/2}) \]

- ^4He: $0s_{1/2} + 0p_{1/2}$
 - ($b_{0s}=1.4 \text{ fm}, b_{0p}=0.8 \text{ fm}$)

- $^4\text{He}+n$ interaction (OCM)
 - Central: Folding potential with Volkov No.2
 - No LS part.

- $H(^5\text{He}) = H(^4\text{He}) + H_{\text{rel}}$

- $\Phi(^5\text{He}) = (0s)^4 \cdot \psi^1_{\text{rel}}$
 + $\left(0s\right)^2(0p_{1/2})^2 \cdot \psi^2_{\text{rel}}$
$E_R = (E_r, \Gamma)$ [MeV] of 5He using 4He with V2+Furu.+G3RS

<table>
<thead>
<tr>
<th></th>
<th>Exp.(KKNN)</th>
<th>Present ($V_T \times 1.0$)</th>
<th>Present ($V_T \times 1.5$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3/2^-$</td>
<td>(0.74, 0.60)</td>
<td>(0.74, 0.65)</td>
<td>(0.74, 0.65)</td>
</tr>
<tr>
<td>$1/2^-$</td>
<td>(2.13, 5.84)</td>
<td>(1.01, 1.05)</td>
<td>(1.37, 1.85)</td>
</tr>
<tr>
<td>ΔE</td>
<td>1.47</td>
<td>0.27</td>
<td>0.63</td>
</tr>
</tbody>
</table>

⇒ Visible contribution of tensor correlation
Energy Levels of 6He without tensor correlation

\begin{align*}
\text{Energy \ [MeV]} & \quad \text{Exp.} \\
& (0.822 \pm 0.113 \pm 20) \\
& \alpha + n + n \\
\text{Theor.} (\alpha + n + n) & -0.975 \\
\end{align*}

Nakayama et. al

$E_r \sim 4$

Nakamura et. al

$(3 \pm 1, 4 \pm 1)$

$\Gamma \sim 2$

$\begin{align*}
0^+ & \quad (0p_{1/2})^2 \\
1^+ & \quad (0p_{3/2})(0p_{1/2}) \\
2^+ & \quad (0p_{3/2})^2 \\
\end{align*}$

$\begin{align*}
0^+ & \quad (2.35, 4.22) \\
1^+ & \quad (3.69, 9.14) \\
2^+ & \quad (0.81, 0.13) \\
\end{align*}$

$\begin{align*}
0^+ & \quad -0.975 \\
\end{align*}$

$\begin{align*}
\text{(0p}_{3/2}^2 \text{)}^2 \\
\end{align*}$
- **Effective Interaction**

 - **Akaishi potential**: G-matrix derived from AV8’ (Acknowledge to Prof. Akaishi)
 - **GPT potential** (Gogny-Pires-Tourreil).
 - C+LS+T, 3-range Gaussian to fit d' properties, and NN phase shifts.

![Diagram](image)

Properties of 4He with $0s+0p$ up to $2p-2h$.

<table>
<thead>
<tr>
<th>Int.</th>
<th>$E \left(\langle V_T \rangle \right)$ [MeV]</th>
<th>$P[2p-2h]$</th>
<th>R_m [fm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>AK</td>
<td>$-19.0 \ (-30.9)$</td>
<td>13 %</td>
<td>1.23</td>
</tr>
<tr>
<td>GPT</td>
<td>$-17.4 \ (-11.2)$</td>
<td>8 %</td>
<td>1.45</td>
</tr>
</tbody>
</table>

\Rightarrow
- Central, LS : GPT
- Tensor : Aakaishi
GPT+AK with modification to reproduce 4He properties

Central part of GPT (2nd range)

$$V_2 = v_2 \ e^{-(r/R_2)^2}$$

$$R_2 \rightarrow R_2 + \Delta R \quad (\Delta R=0.27 \ \text{fm})$$

$$v_2 \rightarrow v_2 + \Delta v$$

Properties of 4He using mod.GPT+AK

<table>
<thead>
<tr>
<th>E ($\langle V_T \rangle$) [MeV]</th>
<th>P[2p-2h]</th>
<th>R_m [fm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-28.3 \ (-16.9)$</td>
<td>10 %</td>
<td>1.49</td>
</tr>
</tbody>
</table>
- $^8\text{He} \ (0^+) \ : \ \text{same neutron number as } ^9\text{Li}$
 - Configuration with H.O. basis function:
 - $0s_{1/2} + 0p_{1/2} + 0p_{3/2}$ up to $2p-2h$.
 - Length parameters $\{b_i\}$ are determined variationally.
 - Interaction:
 - Central,LS : GPT with strengthening ν_2 by 4%
 - Tensor : Akaishi
Energy of 8He (0^+) with mod. GPT + AK $(b_{0s} = 1.6 \ [\text{fm}])$

- B.E. = 28.0 [MeV]
 - $(b_{0p\frac{1}{2}}, b_{0p\frac{3}{2}}) = (1.9, 1.9)$

- B.E. = 26.8 [MeV]
 - $(0.8, 2.0)$

Two minima

Energy of 8He [MeV]
Properties of two minima in 8He (0^+)

- Two minima:
 - Tensor correlation with small $b_{0p1/2}$ ($\sim b_{0s}/2$).
 - Pairing correlation with $b_{0p1/2} = b_{0p3/2}$.

Graphs showing:
- Energy of 8He [MeV] vs. $b_{0p1/2}$ [fm]
 - $\langle V_{LS} \rangle$
 - $\langle V_T \rangle$
 - $\langle V_{LS} \rangle$ and $\langle V_T \rangle$ are nearly constant.

- Probability [%] vs. $b_{0p1/2}$ [fm]
 - Lowest state
 - $\langle 0s \rangle^2 \langle 0p_{1/2} \rangle^2$ (tensor)$ \times 5$
 - $\langle 0p_{3/2} \rangle^2 \langle 0p_{1/2} \rangle^2$ (pairing)

Equations:

- $(b_{0s}, b_{0p3/2}) = (1.6, 2.0)$ [fm]
- $(b_{0s}, b_{0p3/2}) = (1.6, 2.0)$ [fm]
Summary

1. **Tensor correlation** is expected to give a contribution to lower the 1s-orbit in neutron drip line nuclei.

2. Effects of Tensor correlation in 4He and 5He.
 - 4He: p-wave is favored to shrink, Coupling between $0s_{1/2}$ and $0p_{1/2}$.
 (cf. Akaishi(HF), Sugimoto(HF), Doté(AMD))
 - 5He: Visible contribution to the $3/2^-$-$1/2^-$ splitting.

3. Effective interaction
 - modified GPT+AK tensor: Properties of 4He is reproduced.
 - Adequate interaction should be found such as for LS part.

4. For 8He and 9Li
 - **Tensor and Pairing correlations** produce the energy minima.
 (different $b_{0p1/2}$ values) \implies superpose.
$^9\text{Li (3/2}^-, 1/2^-)$ with 0s+0p, $^8\text{He}(0^+)+p$

\[(b_{0s}, b_{0p3/2}) = (1.6, 1.8) \text{ [fm]} \]

Energy of $^9\text{Li (3/2}^-)$ [MeV]

\[\langle V_T \rangle = -6.3 \text{ MeV} \]

\[\langle V_T \rangle = -0.3 \text{ MeV} \]

\[\langle V_T \rangle = -0.7 \text{ MeV} \]
Tensor correlation (TC) in 9Li(3/2$^-$) for 11Li

$$|	ext{0}\rangle = (0s_{1/2})^4 (0p_{3/2})_π (0p_{3/2})^4_μ,$$

$$|^{9}\text{Li}\rangle = |\text{0}\rangle + |\text{TC}\rangle.$$

○ Nagata’s Method (PTP22(1959)274)

- Direct inclusion of D-state component in the relative motion.

$$|\text{TC}\rangle = \mathcal{F}_\text{T} |\text{0}\rangle$$

$$\mathcal{F}_\text{T} = \sum_{i<j} \mathcal{F}_{ij}$$

$$\mathcal{F}_{ij} = f(r_{ij}) \cdot \hat{a}_{ij}^r,$$

$$r_{ij} = r_i - r_j$$

$$f(r_{ij}) = f(r_{ij}) \cdot \left[Y_2(r_{ij}) \otimes S_{2,ij} \right]_0$$

$$S_{2,ij} = [s_i \otimes s_j]_2$$

$$f(r) = \sum_{n=1}^{N} C_n \cdot \phi_n(r)$$
Effect of Tensor Correlation in ^{10}Li

- **Pairing**
- **Tensor**
- **Pairing+Tensor**

$^{9}\text{Li}_{\text{g.s.}}$

$^{10}\text{Li}^{(p)}$

$^{10}\text{Li}^{(s)}$

Pauli blocking

energy gain
• Effect of Tensor Correlation in ^5He, ^6He, ^6Li

• $3/2^--1/2^-$ splitting in ^5He

Effect of Tensor Correlation in ^5He, ^6He, ^6Li
Coupling Matrix Element of Tensor force

\[\langle (0s_{1/2})_1 (0p_{1/2})_1 | V_T | (0s)^4 \rangle \quad (b_{0s}=1.4 \text{ [fm]}) \]

\[b_{0s}=1.0 \text{ fm} \]
\[b_{0s}=1.2 \text{ fm} \]
\[b_{0s}=1.4 \text{ fm} \]
\[b_{0s}=1.6 \text{ fm} \]
\[b_{0s}=1.8 \text{ fm} \]

\(V_T \) becomes large with narrow 0s-wave.
Effect of tensor force on the energy surface of 8He (0^+)

With Tensor force

$(b_0s, b_{0p3/2}) = (1.4, 2.0) \text{ [fm]}$

Without Tensor force

$(b_0s, b_{0p3/2}) = (1.4, 2.0) \text{ [fm]}$