Tensor correlation in neutron halo nuclei

Takayuki MyoRCNP, Osaka Univ.Kiyoshi KatōHokkaido Univ.Kiyomi IkedaRIKEN

RCNP Workshop / 2004.3.24

• Contents

- Tensor Correlation for s-wave problem in 10,11 Li (cf. pairing). – Occurance of Halo structure in 11 Li (N=8).
 - Inversion problem in 10 Li (N=7).
- Model : ${}^{9}Li+n+n$ with Tensor correlation in ${}^{9}Li$. Analogy : ${}^{4}He+n+n$ of ${}^{6}He$.
- Results : 1. ⁴He with tensor correlation using Shell Model basis. 2. ⁵He with ⁴He+n $(3/2^{-}-1/2^{-} \text{ splitting})$.
 - 3. Effective Interaction.
 - 4. ⁸He with tensor and p-shell pairing correlations.

- \bullet Description of Halo nuclei based on the "core+n+n" model
 - \circ ⁶He : Successful results for G.S. without core excitation.
 - $\circ~^{11}\text{Li}$: Ambiguity in $^{9}\text{Li-n}$ interaction.
 - ${}^{9}\text{Li}: (0p_{3/2})_{\mathcal{V}}$ -closed \rightarrow Underbinding.
 - ⁹Li : *p*-shell pairing correlation for neutron
 - \bigcirc Inversion phenomena in ¹⁰Li.
 - \times *p*-shell closed configuration in ¹¹Li.
 - Effect of tensor correlation
 - ⁹Li : pairing corr. + tensor corr.
 - Degeneracy of p- and s-orbitals in both 10,11 Li ?
 - $\circ\,$ inversion phenomena in N=7, halo production
 - [Ref]: K.Katō, K.Ikeda, PTP89('93)623. T.Myo, S.Aoyama, K.Katō, K.Ikeda, PTP108('02)133.

• Tensor correlation in ⁴He and ⁹Li core

- 2p-2h excitation from (0s)⁴
- P[D] ~ 10-13%

[Ref.] Y.Akaishi et. al, Inter. Review of Nucl. Phys. 4(1986) H. Kamada et. al, PRC64(2001)044001

• Effect of Tensor Correlation in ¹¹Li

- Model to incorporate the tensor correlation
 - Criterion : ${}^{4}\text{He}$ (P[D]~10-13%)
 - Extension of Terasawa, Nagata's works (⁵He;LS splitting)
 - Application to ${}^{6}\text{He} = {}^{4}\text{He}(*) + n + n$.

 \Rightarrow Review of Halo mechanism, Resonance structures.

- \circ Wave Function for core part (⁴He, ⁹Li)
 - H.O.basis with different length parameters $\{b_i\}$, such as $b_{0s} \neq b_{\overline{0p}} \dots$ to include the higher shell effect.

- for ⁴He,
$$0s_{1/2} + \overline{0p}_{1/2} + \overline{0p}_{3/2}$$
 up to 2p-2h.

 $\circ \Phi(^{4}\text{He}) = \Sigma_{\alpha} C_{\alpha} \psi_{\alpha}(\{b_{i}\}) = C_{1} (0s)^{4} + C_{2} (0s)^{2} (\overline{0p}_{1/2})^{2} + \cdots$

$$\circ \ \frac{\partial \langle H - E \rangle}{\partial b_i} = 0 \ , \ \frac{\partial \langle H - E \rangle}{\partial C_{\alpha}} = 0$$

- Interaction :
 - Central : Volkov No.2 with M=0.6
 - Tensor : Furutani (³He+p scattering)
 - LS : G3RS

[Ref]: H. Furutani, H. Horiuchi, R.Tamagaki, PTP62('79)981

• ⁴He G.S.(0⁺) with V2+Furu+G3RS

Amplitudes with $b_{\overline{0}p_{1/2}} = b_{\overline{0}p_{3/2}}$	2=0.8 fm
$(0s_{1/2})^4$	94.6 %
$(0s_{1/2})_{JT}^{2}(\overline{0p}_{1/2})_{JT}^{2}$ $(JT)=(10)$ (JT)=(01)	4.5 % 0.03 %
$(0s_{1/2})^2(\overline{0p}_{3/2})^2$	0.3 %
$(0s_{1/2})^2(\overline{0p}_{1/2})(\overline{0p}_{3/2})$	0.6 %
P[D]	3.4 %

• 0⁻ coupling between $0s_{1/2}$ and $0p_{1/2}$ \Rightarrow pion nature • Coupling Matrix Element of Tensor force

• ⁴He G.S.(0⁺) with V2+Furu.+G3RS

- ³E part of Central force is adjusted to reproduce the B.E. of ⁴He (28.3 MeV).

<mark>b<code>Op</code></mark> [fm]	2.0	1.4 (=b _{0s})	0.8	(V _T ×1.5)	
$\langle Kinetic \rangle$ [MeV]	45.8	49.5	52.7	58.0	
$\langle Central \rangle$	-74.3	-73.4	-66.0	-53.8	
$\langle Tensor \rangle$	-0.6	-5.2	-16.4	-34.3	tensor force can
$\langle LS \rangle$	2×10 ⁻³	1×10 ⁻⁴	0.5	1.0	be incoroperated
R _m [fm]	1.52	1.48	1.48	1.48	
2p-2h [%]	1.6	4.1	5.4	11.0	
$(\overline{0}, y^2)$ (JT)=(10)	0.6	2.9	4.5	9.6	
(JT)=(01)	0.1	0.1	3×10 ⁻²	0.1	
$(\overline{0p}_{3/2})^2$	0.8	0.2	0.3	0.6	
$(\overline{0p}_{1/2})(\overline{0p}_{3/2})$	6×10 ⁻²	0.9	0.5	0.6	
P[D] [%]	0.5	2.3	3.4	7.2	

• 3/2⁻-1/2⁻ splitting in ⁵He with ⁴He+n (Preliminary)

• ⁴He:
$$0s_{1/2} + \overline{0p}_{1/2}$$

- $(b_{0s} = 1.4 \text{ fm}, b_{\overline{0p}} = 0.8 \text{ fm})$

- \circ ⁴He+n interaction (OCM)
 - Central: Folding potential with Volkov No.2
 - No LS part.

 $\circ E_R = (E_r, \Gamma)$ [MeV] of ⁵He using ⁴He with V2+Furu.+G3RS

	Exp.(KKNN)	Present ($V_T \times 1.0$)	Present ($V_T \times 1.5$)
3/2-	(0.74, 0.60)	(0.74, 0.65)	(0.74, 0.65)
1/2-	(2.13, 5.84)	(1.01, 1.05)	(1.37, 1.85)
ΔE	1.47	0.27	0.63

 \Rightarrow Visible contribution of tensor correlation

• Energy Levels of ⁶He without tensor correlation

- Effective Interaction
 - Akaishi potential : G-matrix derived from AV8' (Acknowledge to Prof.Akaishi)
 - GPT potential (Gogny-Pires-Tourreil).
 - C+LS+T, 3-range Gaussian to fit d's prperties, and NN phase shifts.

[Ref]: D. Gogny, P. Pires and R. De Tourreil, Phys. Lett. B32('70)591

 \circ Properties of ⁴He with 0s+0p up to 2p-2h.

Int.	$E\left(\left< V_T \right> \right)$ [MeV]	P[2p-2h]	R _m [fm]
AK	-19.0 (-30.9)	13 %	1.23
GPT	-17.4 (-11.2)	8 %	1.45

- \Rightarrow Central, LS : GPT
 - Tensor : Aakaishi

• GPT+AK with modification to reproduce ⁴He properties

◦ Central part of GPT(2nd range) $V_2 = v_2 e^{-(r/R_2)^2}$ $R_2 \rightarrow R_2 + \Delta R$ (ΔR =0.27 fm) $v_2 \rightarrow v_2 + \Delta v$

 \circ Properties of ⁴He using mod.GPT+AK

${\sf E}\left(\langle{\sf V}_{\sf T} ight angle ight)$ [MeV]	P[2p-2h]	R _m [fm]
-28.3 (-16.9)	10 %	1.49

- ⁸He (0⁺) : same neutron number as ⁹Li
 - $\circ~$ Configuration with H.O. basis function:
 - $0s_{1/2} + \overline{0p}_{1/2} + \overline{0p}_{3/2}$ up to 2p-2h.
 - Length parameters $\{b_i\}$ are determined variationally.
 - \circ Interaction :
 - Central, LS : GPT with strengthening V_2 by 4%
 - Tensor : Akaishi

• Energy of ⁸He (0⁺) with mod.GPT+AK ($b_{0s}=1.6$ [fm])

 \circ Properties of two minima in ⁸He (0⁺)

• two minima: Tensor correlation with small $b_{0p1/2}$ (~ $b_{0s}/2$). Pairing correlation with $b_{0p1/2}=b_{0p3/2}$.

Summary

- 1. Tensor correlation is expected to give a contribution to lower the 1s-orbit in neutron drip line nuclei.
- 2. Effects of Tensor correlation in ${}^{4}\text{He}$ and ${}^{5}\text{He}$.
 - ⁴He : p-wave is favored to shrink, Coupling between $0s_{1/2}$ and $0p_{1/2}$. (cf. Akaishi(HF), Sugimoto(HF), Doté(AMD))
 - ⁵He : Visible contribution to the $3/2^{-1}/2^{-1}$ splitting.
- 3. Effective interaction
 - modified GPT+AK tensor : Properties of ⁴He is reproduced.
 - Adequate interaction should be found such as for LS part.
- 4. For ⁸He and ⁹Li
 - Tensor and Pairing correlations produce the energy minima. (different $b_{0p1/2}$ values) \implies superpose.

• ⁹Li $(3/2^{-}, 1/2^{-})$ with 0s+0p, ⁸He (0^{+}) +p

• Tensor correlation (TC) in ${}^{9}\text{Li}(3/2^{-})$ for ${}^{11}\text{Li}$

$$|0\rangle = (0s_{1/2})^4 (0p_{3/2})_{\pi} (0p_{3/2})_{\nu}^4$$
,
 $|^{9}\text{Li}\rangle = |0\rangle + |\text{TC}\rangle.$

- Nagata's Method (PTP22(1959)274)
 - Direct inclusion of D-state component in the relative motion.

$$\begin{aligned} |\mathsf{TC}\rangle &= \mathcal{F}_{\mathsf{T}} |0\rangle \\ \mathcal{F}_{\mathsf{T}} &= \Sigma_{i < j} \mathcal{F}_{ij} \\ \mathcal{F}_{ij} &= f(\boldsymbol{r}_{ij}) \cdot \hat{a}_{ij}^{r}, \quad \boldsymbol{r}_{ij} = \boldsymbol{r}_{i} - \boldsymbol{r}_{j} \\ f(\boldsymbol{r}_{ij}) &= f(r_{ij}) \cdot [Y_{2}(\boldsymbol{r}_{ij}) \otimes S_{2,ij}]_{0} \\ S_{2,ij} &= [\boldsymbol{s}_{i} \otimes \boldsymbol{s}_{j}]_{2} \\ f(r) &= \Sigma_{n=1}^{N} C_{n} \cdot \phi_{n}(r) \end{aligned}$$

• Effect of Tensor Correlation in ¹⁰Li

• Coupling Matrix Element of Tensor force

 \circ Effect of tensor force on the energy surface of ⁸He (0⁺)

