Jastrow相関基底における有効相互作用

---Transcorrelated法の核構造への適用---

鈴木宜之(新潟大理) 松村英樹(新潟大自)

Outline

- 1. Motivation
- 2. Transcorrelated Hamiltonian
- 3. Choice of Jastrow correlation factor
- 4. Simple examples
- 5. Solution with non-Hermitean Hamiltonian
- 6. Summary and problems

Motivation

- Nuclear structure study with realistic interactions
- Short-range (strong repulsion) and long-range (tensor) correlations (——binding energy, density, momentum distribution) make a solution difficult
- SVM calculations with correlated Gaussians are successful

$$\exp[-\sum_{i < j} lpha_{ij} (m{r}_i - m{r}_j)^2]$$

To cope with strong repulsion

- 1. G-matrix approach
- 2. Correlation factor

$$\Psi = F\Phi$$

$$F = \prod_{i < j} f(r_{ij})$$
: (Jastrow: state - independent)

$$F = \mathcal{S} \prod_{i < j} \hat{f}_{ij}$$
: (state – dependent)

 Φ : model wave function (e.g., Slater determinant)

- Calculation with correlated basis functions is performed with VMC methods (Argonne, Pisa, Granada, ...)
 - \longrightarrow Minimization of the energy

$$E = \frac{\langle F\Phi|H|F\Phi\rangle}{\langle F\Phi|F\Phi\rangle}$$

with respect to the variation of parameters of F and Φ

• Though the quality of VMC performance is acceptable, the VMC calculation is fairly involved.

We ask the following questions in the case of Jastrow basis:

- 1. Equation of motion for Φ
- 2. Choice of correlation factor f(r)

Transcorrelated Hamiltonian

Equation of motion for Φ :

$$HF\Phi = EF\Phi \longrightarrow H'\Phi = E\Phi$$

with transcorrelated Hamiltonian

$$H' = F^{-1}HF$$
 $F = \prod_{i < j} f(r_{ij})$

For the Hamiltonian containing two-body potentials

$$H = T - T_{\text{c.m.}} + V_c + V_t + V_b$$

H' contains operators up to three-body terms and no more

$$H' = T - T_{\text{c.m.}} + \sum_{i < j} t_{ij} + T^{(3)} + V_c + V_t + V_b + V_b^{(3)}$$
with $(g' = f'/f)$

$$t_{ij} = -\frac{\hbar^2}{m} \left(g''(r_{ij}) + \frac{2}{r_{ij}} g'(r_{ij}) + g'(r_{ij})^2 + \frac{1}{r_{ij}} g'(r_{ij}) \boldsymbol{r}_{ij} \cdot (\nabla_i - \nabla_j) \right)$$

and where

$$T^{(3)} = \sum_{i < j < k} (t_{ijk} + t_{jki} + t_{kij})$$

with

$$t_{ijk} = -\frac{\hbar^2}{m} \frac{1}{r_{ij}} g'(r_{ij}) \frac{1}{r_{ik}} g'(r_{ik}) \boldsymbol{r}_{ij} \cdot \boldsymbol{r}_{ik}$$

Spin-orbit force:

For $V_b = \sum_{i < j} V_{b_{ij}}$ with

$$V_{b_{ij}} = v_b(r_{ij})\boldsymbol{r}_{ij} imes rac{1}{2}(\boldsymbol{p}_i - \boldsymbol{p}_j) \cdot (\boldsymbol{s}_i + \boldsymbol{s}_j)$$

$$V_b^{(3)} = \sum_{i < j < k} (v_{ijk}^b + v_{jki}^b + v_{kij}^b)$$

with

$$v_{ijk}^b = -\frac{1}{2}i\hbar v_b(r_{ij})\boldsymbol{r}_{ij} \times \left(\frac{1}{r_{ik}}g'(r_{ik})\boldsymbol{r}_{ik} - \frac{1}{r_{jk}}g'(r_{jk})\boldsymbol{r}_{jk}\right) \cdot (\boldsymbol{s}_i + \boldsymbol{s}_j)$$

Properties of H':

- \bullet H' contains operators of up to three-body terms
- Eigenvalues of H and H' are identical
- H' is not Hermitean

Choice of Jastrow correlation factor

Suppose that the central potential is split to two parts:

$$V_c = W_c + U_c$$

where W_c is short-range repulsive potential

f or g' can be chosen to eliminate W_c from H'

$$-\frac{\hbar^2}{m} \left(g''(r) + \frac{2}{r} g'(r) + g'(r)^2 \right) + W_c(r) = 0$$

or equivalently

$$-\frac{\hbar^2}{m} \left(\frac{d^2}{dr^2} + \frac{2}{r} \frac{d}{dr} \right) f(r) + W_c(r) f(r) = 0$$

with the boundary condition

$$f(r) \to 1$$
 for $r \to \infty$

That is, f is a solution of two-nucleon relative motion with S-wave and with zero energy.

With this choice H' reduces to

$$H' = T - T_{\text{c.m.}} + T^{(2)} + T^{(3)} + U_c + V_t + V_b + V_b^{(3)}$$

with

$$T^{(2)} = -\frac{\hbar^2}{m} \sum_{i < j} \frac{1}{r_{ij}} g'(r_{ij}) \boldsymbol{r}_{ij} \cdot (\nabla_i - \nabla_j)$$

Deuteron

$$H = T + V \qquad \qquad H' = T + U + H_1$$

Potential	$\langle T \rangle$ [MeV]	$\langle V angle \; [{ m MeV}]$	$\langle U angle \; [{ m MeV}]$	$\langle H1 \rangle \; [{ m MeV}]$	$\langle E angle \; [{ m MeV}]$
Minnesota.	10.487	-12.689			-2.202
,	10.514		-12.747	0.0310	-2.202
	22.340		-43.100	18.557	-2.202
Volkov No.1	4.273	-4.818			-0.545
	4.424		-5.131	0.161	-0.545
	7.233		-12.042	4.263	-0.545
ATS3	12.115	-14.330			-2.215
	13.728		-19.258	3.314	-2.215
	30.370		-81.139	48.552	-2.215

Potential	$\langle T_5 \rangle$	$\langle T_{\rm D} \rangle$	$\langle V_{\mathbf{C}}^{\mathbf{S}} \rangle$	$\langle V_{\rm C}^{\rm D} \rangle$	$\langle V_{ m T}^{ m SD} angle$	$\langle V_{ m T}^{ m D} angle$			$\langle E \rangle$
Tamagaki		5.636	-6.644	-0.650	-12.732	1.271			-2.277
	$-\langle T_5 \rangle$	$\langle T_{ m D} \rangle$	$\langle U_{\rm C}^{\rm S} angle$	$\langle U_{\mathbf{C}}^{\mathbf{D}} \rangle$	$\langle U_{ m T}^{ m SD} angle$	$\langle U_{ m T}^{ m D} angle$	$\langle H_1^{\mathtt{S}} angle$	$\langle H_1^{ m D} angle$	$\langle E \rangle$
	17.256	10.175	-30.262	-1.929	-21.567	2.090	21.635	0.324	-2.277
	4.325	2.938	0.0	0.0	-6.576	0.639	-3.237	-0.366	-2.277

Solution with non-Hermitean Hamiltonian

$$H'\Phi = E\Phi$$

- The principle of energy minimization cannot be used to determine E and Φ
- The minimization of the variance of local energy or the norm of the residue vector

$$(H'-E)\Phi/\sqrt{\langle\Phi|\Phi\rangle}$$

may be used.

The norm of the residue vector is

$$\begin{split} \sigma^2 &= \langle (H'-E)\Phi|(H'-E)\Phi\rangle/\langle\Phi|\Phi\rangle \\ &= \int |\Phi|^2 \left|\frac{1}{\Phi}H'\Phi - E\right|^2 d\tau/\int |\Phi|^2 d\tau \end{split}$$

where the energy E is taken as $(\partial \sigma^2/\partial E = 0)$

$$E = \frac{\langle \Phi | H' \Phi \rangle + \langle H' \Phi | \Phi \rangle}{2 \langle \Phi | \Phi \rangle} = \frac{\text{Re} \langle \Phi | H' \Phi \rangle}{\langle \Phi | \Phi \rangle}$$

$$\sigma^2 = \frac{\langle H'\Phi|H'\Phi\rangle}{\langle \Phi|\Phi\rangle} - E^2$$

If Φ is approximated with a single Slater determinant

$$\Phi = \frac{1}{\sqrt{A!}} \begin{vmatrix} \phi_1(1) & \phi_2(1) & \cdots & \phi_A(1) \\ \phi_1(2) & \phi_2(2) & \cdots & \phi_A(2) \\ \vdots & \vdots & \vdots & \vdots \\ \phi_1(A) & \phi_2(A) & \cdots & \phi_A(A) \end{vmatrix}$$

the minimization of σ^2 with the condition $\langle \phi_i | \phi_j \rangle = \delta_{i,j}$ leads to a Hartree-Fock like equation for the single-particle orbits

$$\frac{\delta}{\delta \phi_i^*} \langle \Phi | H' \Phi \rangle = \sum_j \epsilon_{ij} \phi_j$$

$$-\frac{\hbar^{2}}{2m}\nabla^{2}\phi_{i}(1) + \frac{1}{2}\sum_{j}\langle\phi_{j}(2)|v_{12}^{(2)} + v_{21}^{(2)}|\phi_{i}(1)\phi_{j}(2) - \phi_{j}(1)\phi_{i}(2)\rangle$$

$$+\frac{1}{2}\sum_{j\neq k}\langle\phi_{j}(2)\phi_{k}(3)|v_{123}^{(3)} + v_{231}^{(3)} + v_{312}^{(3)}|\begin{vmatrix}\phi_{i}(1) & \phi_{j}(1) & \phi_{k}(1)\\\phi_{i}(2) & \phi_{j}(2) & \phi_{k}(2)\\\phi_{i}(3) & \phi_{j}(3) & \phi_{k}(3)\end{vmatrix}\rangle$$

$$= \sum_{i} \epsilon_{ij}\phi_{j}(1)$$

Summary

- Transcorrelated Hamiltonian contains only 3-body terms
- Possible to eliminate short-range repulsive potential
- ullet Established a relationship between H' and F

Problems

- Develop a method of solution for $H'\Phi = E\Phi$
- Applications to realistic cases
- ullet Calculation of observables with $F\Phi$

 $\langle F\Phi|\mathcal{O}|F\Phi\rangle/\langle F\Phi|F\Phi\rangle$