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• 76Ge for neutrinoless double-beta decay 

• MAJORANA goals and expected sensitivity 

• Backgrounds and mitigation 

• Technology choices and development status 
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Germanium for neutrinoless 
double-beta decay experiments 

Germanium detectors 
• Source is detector 
• Good energy resolution 
• Well established 

technology 
• Intrinsically clean (high-

purity germanium) 
 

76Ge isotope for 0νββ 
• Q-value of 2039keV 

above most backgrounds 
• Can be enriched to >86% 

in 76Ge (nat. abundance ~ 
8%) 

• Slow 2νββ rate (1021 yr) 
• Best limit to date on 0νββ 
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Tonne-scale sensitivity for Ge 

Need tonne-year exposure to probe inverted hierarchy, 
atmospheric neutrino mass scale 
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MAJORANA DEMONSTRATOR Goals 

• An R&D project towards a tonne scale germanium 
experiment 

• Demonstrate a design that can achieve a background 
rate of 1cnt/t/y/ROI when scaled to a 1 tonne detector 
(ROI = 4keV region around 2039keV) 

• Test Klapdor-Kleingrothaus claim 
• Agreement to work with GERDA to develop a design for 

a tonne scale experiment 
• Potential for additional physics (eg. dark matter) 
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The MAJORANA DEMONSTRATOR 
• 40kg of detectors, up to 30kg enriched to >86% 76Ge 
• 2 cryostats made of copper electroformed 

underground, 7 strings of 5 detectors per cryostat 
• “Conventional” shielding (EfCu, Cu, Pb, poly),4π 

active muon veto, Rn exclusion box 

6 Ryan Martin, The Majorana Demonstrator 

 



MJD Sensitivity 
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With 30kg of enriched germanium detectors, ~1 yr to test 
KKDC claim at 90% 
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30 kg y 



MJD Schedule 
MJD will proceed in 3 phases 
• Prototype Module (summer 2012):  

o above ground, commercial copper, 2-3 
strings natGe 

 Test mechanical design 
 Test detector performance in cryostat and 

Monte Carlo models (eg. granularity) 

• Cryostat 1 (spring 2013): 
o  underground, electroformed copper, 3 

strings enrGe, 4 strings natGe 

• Cryostat 2 (fall 2014): 
o  underground, electroformed copper, up to 7 

strings enrGe 
 

Prototype cryostat 
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Underground cryostat 
and “monolith” 



Backgrounds and mitigation 

•Detailed MC simulations to 
understand background contributions 
•Intensive assay campaign to identify 
clean materials 
•Clean handling 
•Special processes (electroforming) 
•Analysis cuts (“PSA”, “granularity”) 

• Natural radioactivity: 
– in components (U, Th) 
– surface contaminants (α, 

β) 
• Cosmogenic: 

– Activation (68Ge, 60Co) 
– Muons, fast neutrons 

• Irreducible: 
– 2νββ decay 
– Neutrino scattering 

(reactor, solar, atm., geo, 
SN…) 

 
9 Ryan Martin, The Majorana Demonstrator 

Detector mount and Geant4 geometry: 

 



Backgrounds and mitigation 

•Deep underground 
•Muon veto 
•Fabricate materials underground 
(copper) 
•Limit surface exposure (germanium) 
•Analysis cuts (68Ge tag using low 
energy x-rays, Pulse Shape Analysis) 
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E/keV 

Ryan Martin, The Majorana Demonstrator 

Cosmogenic lines at low energy (from CoGeNT, 
PRL107 (2011) 141301): • Natural radioactivity: 

– in components (U, Th) 
– surface contaminants (α, β) 

• Cosmogenic: 
– Activation (68Ge, 60Co) 
– Muons, fast neutrons 

• Irreducible: 
– 2νββ decay 
– Neutrino scattering 

(reactor, solar, atm., geo, 
SN…) 

 

 



Backgrounds and mitigation 

•Irreducible backgrounds 
•Energy resolution of germanium is 
main mitigation 
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• Natural radioactivity: 
– in components (U, Th) 
– surface contaminants (α, β) 

• Cosmogenic: 
– Activation (68Ge, 60Co) 
– Muons, fast neutrons 

• Irreducible: 
– 2νββ decay 
– Neutrino scattering 

(reactor, solar, atm., geo, 
SN…) 

 

Illustrative 0νββ spectrum (not normalized): 
 



MJD status and technologies 
• Underground lab 

• Electroformed copper 

• Thermal tests 

• Prototype cryostat fabrication 

• MJD detectors and status 

• Low noise/low background electronics 

• Detector integration tests 

• Detailed model and simulations 

• Calibration 

 

 12 Ryan Martin, The Majorana Demonstrator 

Nov 2011 



The Sanford Underground Lab 
• MJD will be located at 

4850’ level of Sanford 
Underground Lab at the 
Homestake mine in Lead, 
South Dakota 

• Beneficial occupancy 
expected spring 2012 
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Outfitting of MJD lab Nov 2011 

 



Underground clean room 
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After de-watering Clean room 

•Underground clean 
room was completed in 
spring 2011 
•Started storing natural 
detectors underground in 
winter 2010 

Underground detector storage 



Electroformed copper 

• Deployed 10 baths in 
underground clean room 
(4850ft) [also: 6 baths at 
PNNL (100ft), Sept.2010] 

• Started underground 
electroforming 21 July 2011 
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MAJORANA detector cooling 

•Cooling to the cold plate provided by a thermosiphon 
•Detailed thermal model produced to understand cooling 
power and needs 
•Cooling tests performed and design optimized (detector 
blanks < 95K) 

Prototype thermosiphon tested 
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Thermosiphon Test string 



MJD prototype cryostat 
components 
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Demonstrated e-beam 
weld for cryostat hoop 

Vacuum system for prototype 

Parts purchased! 

Purchased clean machining tools to be 
deployed in above ground clean room 
(then underground) 

Parts for 
thermosiphon 

Most components 
for prototype in 
hand 



“PPC” detectors 
• P-type Point Contact 

HPGe detectors 
• “Novel” technology 
• Small point contact to 

readout charge, low 
capacitance 

• Thick outer contact 
(n+, lithium diffused), 
strongly attenuates 
alphas 

Semi coaxial detector 

Point contact detector 
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Weighting 
potential 

•P. N. Luke, F. S. Goulding, N. W. Madden, R. H. Pehl, 
IEEE T. Nucl. Sci. 36 (1989) 926 
•P. S. Barbeau, J. I. Collar, O. Tench, J. Cosmol. 
Astropart. Phys. 0709 (2007) 009. 
•E. Aguayo et al. [The Majorana Collaboration], 
http://arxiv.org/abs/1109.6913 (2011) 

 



Properties of PPCs 

•Sharp weighting potential 
allows multi-site events to be 
identified 
•Most backgrounds at 2MeV are 
multi-site 

•Small capacitance results 
in low noise and excellent 
performance at low 
energies 
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1332 keV 
multi-site 
event from 
PPC 
detector 

PRL 101 251301 (2008) 



Natural detectors 
• Have tested a large number 

of PPC detectors within the 
collaboration 

• Have purchased all 
detectors required for non-
enriched component 

• “Modified – BEGe” 
detectors purchased from 
Canberra in FY11-12 
received and characterized 
(20+kg) 

• 19 BEGes now stored 
underground 
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PPCs tested by MJD 
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Institution Manufacturer Dia. x length 
[mm x mm] 

Type Date 

LBNL Paul Luke 
 
 
 
Canberra USA 

50 x 50 
62 x 50 
20 x 10 
62 x 50 
70 x 30 

NPC 
Segmented-PPC 
Mini-PPCs (x3) 
PPC 
Mod. BEGe  

1987 
2008 
2009 
2009 
2011 

Univ. 
Chicago 

Canberra France 
Canberra USA 

50 x 44 
60 x 30 

PPC 
Mod. BEGe (large) 

2005 
2008 

PNNL Canberra France 50 x 50 PPC 2008 

LANL PHDs 
Canberra USA 
ORTEC 
 
PGT 

72 x37 
70 x 30 
62 x 51 
67 x 54 
70 x 30 

PPC 
Mod. BEGe (x39) 
PPC 
PPC 
PPC 

2008 
2009-11 
2009 
2010 
2010 

UNC Canberra USA 61 x 30 
61 x 32 
70 x 30 

Mod. BEGe (low bgd) 
Mod. BEGe 
Mod. BEGe (x3) 

2009 
2010 
2011 



Enriched germanium processing 
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Enrichment to >86% at 
Electro-Chemical Plant (ECP) 
in Russia 

Reduction to Ge metal 
at Electrochemical 
Systems Inc. (ESI) 

Zone-refinement by 
commercial vendor 

Detector fabrication by commercial 
detector vendor 

Pull crystal by 
commercial vendor 
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Enriched germanium status 
• Received first batch (29kg) of 

GeO2 enriched in 76Ge on 12th 
September 2011 from ECP 
(Russia) 

• Verified to be 88% 76Ge, 
meeting our specifications 

• Material stored at shallow site 
(~100mwe) 

• Have successfully processed 
natGe 

 

Shipping/storing 
shield 

Samples to test 
isotopic purity 

Shallow site 
storage safe 

Oxide powder in 
storage contained 
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Batch Quantity 
Batch 1 20kg 
Batch 2 15.5kg 
From Russian 
collaborators 

10-14kg 

Enriched Ge procurements (elemental weight) 



Low background front-end 
electronics 

Low Mass Front End (LMFE): 
• Fused silica substrate 
• Au-Cr traces 
• Amorphous-Ge resistor 
• Low background 
• Low noise 

fused silica substrate 

Contact pad 

FET 

Pulser capacitively 
coupled 

R (aGe) 

1.5cm 
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Det. 

LMFE Cable Preamp 

 



Low background cable 

• Parylene coated copper 
• Tested signal cable with a detector 
• Components assayed clean, need to confirm for 

assembled cable 
• Investigating commercial options in parallel 
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Detector integration tests 
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PPC detector 
integration test with 
LMFE, prototype 
cable, mount (2010-
2011) 

String integration tests 
(on going) 

Preamplifier card (1 
per detector) 

Preamplifier mother 
board (for 5 detectors) 



String test cryostat 
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String test cryostat and 
dewar 

Preamplifier mother board on string 
test cryostat 

On-going tests to: 
•Test electronic readout (grounding, 
cross-talk, etc.) 
•Test operation of multiple detectors 



Readout chain performance – 
Energy resolution 
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Energy Specification Measured 

1332keV <3.2keV 2.0keV 

60keV <0.5keV 0.38keV 

Energy resolution with readout 
chain meets specifications: 
•high energy for 0νββ 
•low energy for 68Ge tag 



Readout chain performance – 
Pulse shape analysis 
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232Th calibration data from prototype shows that with pulse shape analysis 
cut: 
•Remove 93% of multi-site events (full energy peaks), background-like 
•Retain 90% of single-site events (208Tl double escape peak), 0νββ-like 

Energy/channel 
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MJD Simulations 

• Detailed Monte Carlo model to simulate backgrounds from 3800 
components and detailed verification campaign 

• So far ~60kCPU hours of simulations, analysis in progress 
• U, Th, K chains for all components and 68Ge, 60Co for select components 
• Dominant contribution at Qββ is from multi-site events from U and Th (214Bi, 

208Tl) 
30 

224Ra from HV nut 
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MJD Background Model 
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Radioactivity 

Cosmogenic 
activation 

Environmental 

µ-induced 

• Detailed background 
model produced 

• Based on previous 
assays and 
reasonable 
expectations 

• Expect 4c/t/y/ROI in 
MJD 

• Translates to 
1c/t/y/ROI for tonne-
scale experiment: 
– More self-shielding 
– Longer cooldown 

for 68Ge 
– Deeper (or 

improved 
shielding) 
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MALBEK 
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•450g modified BEGe detector in a low background mount deployed at the 
Kimballton Underground Research Facility (KURF) in Virginia (1450mwe) 
•Used to study low energy physics, understand backgrounds, test DAQ 
(including low energy triggering) and validate Monte Carlo simulation 
package 
•Recently remounted detector removing Pb compononents, 210Pb 
background down by x10 
 

Data 
MC 

Detailed MC 
geometry Simulated spectrum MALBEK detector 

NIM A 652 (2011) 692 



MJD calibration 
• Electroformed copper 

calibration track, Rn 
exclusion, retractable line 
sources 

• Internal cosmogenic lines 
for low energy 

• Dedicated pulser 
distribution system 

• PSA, granularity, efficiency, 
electronics response, 
energy, timing 
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Source drive motor 
228Th source 



Summary 

34 

• The MAJORANA DEMONSTRATOR is a prototype to 
investigate the design for a tonne scale 
germanium 0νββ experiment 

• Detailed simulations suggest that the MJD design 
will result in required level of backgrounds when 
scaled to a tonne scale experiment 

• Will start to operate with enriched germanium in 
2013 

• Expected to test the KKDC claim with 
approximately one year of data (with 2 cryostats) 
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Backup slides 
• Chi-squared PSA 
• SSTC for 68Ge 
• Slow pulses (x2) 
• MALBEK lead background 
• Monolith 
• Glove box 
• S4 geometries 
• Depth dependent backgrounds 
• Background limits 
• 1TGe down select schedule 
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Pulse shape analysis with PPCs 

R.J. Cooper et al., Nucl. Instr. And Meth. A 629 303 (2011) 

• Pulse fitting method to 
identify single-site events 
(0νββ-like) 

• Based on a library of 
unique pulse shapes for 
each detector 

• Retain 98% of single-site 
events (DEP) while only 
1% of multi-site events 
(SEP) 

• Rely on PSA to remove 
‘multi-site’ backgrounds 
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No PSA 
PSA 

Data 
Fit 
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Time correlation cut (68Ge) 
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Raw 
Granularity 
Gran+PSA 

• 68Ge produced by cosmogenic activation 
• Sea-level activation rate 2.1 (30) atoms/kg/day for enrGe (natGe) 
• Assume 100 day exposure for enrGe, saturation for natGe 
• Highly suppressed by granularity (x1/4) and PSA (1/25x) 
• Tag 68Ge decays with 10.3keV and 1.1keV x-rays, then veto for ~5 x 68 

minutes 
• 0.4 c/t/y/ROI (after analysis cuts) 

68Zn 

68Ge 

68Ga 

EC 
270.8d 

EC (10%), β+(87%) 
 68min 

X-rays: 
10.3keV (K, 86%) 
1.1keV (L, 12%) 

Q=2.9MeV 

Q=106keV 
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Detailed detector studies 

Detailed scanning of 
detectors 

Slow pulses evident 

Slow pulses “leaking out” 
from 60keV 241Am peak 

• Slow, energy-degraded 
pulses observed in 
CoGeNT 

• From energy 
depositions near thick 
n+ contacts, where E-
field is weak 

• Important to understand 
for MJD low energy 
analysis 

• Several detailed 
experiments performed 

• Quantitative model 
produced 
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Detailed detector studies (2) 
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•β−γ coincidence 
studies showed 
that the slow 
pulses are also 
delayed 
•Detailed model 
being developed 
to quantitatively 
understand 



MALBEK Pb backgrouds 
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After removing Pb 
shims, backgrounds at 
low energy: 
•16x improvement 
[thres. – 1keV] 
•7x improvement 
[2keV-8keV] 
 



“Monolith” 
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•Monolith allows detector and part of the shield to be removed 
for modular deployment 
•Hovair purchased and delivered 



Glove box 

•Underground assembly will be performed in glove 
box (Rn mitigation) 
•Design final 
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MJD background limit 
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Tonne-scale studies 
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•Different geometries studied for tonne scale experiment, collaboration with 
some members of GERDA 
•Engineering studies also performed 
•Collaboration with DUSEL/SURF engineers 
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Depth-dependent backgrounds 

46 

•Scaled backgrounds by 
assuming 4300mwe (vs 
3100mwe), better veto, thicker 
poly 
•For tonne scale experiment, 
need to go to ~6000mwe for MJ-
style design 
•Can go less deep with liquid 
shield 
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Tonne-scale schedule 
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•Technology selection will be based on outcome of R&D 
and results from MJD and GERDA 
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