R&D on Xe136 0vββ search with Particle AND Astroparticle Xenon Observatory

Xiang Liu Institute of Nuclear, Particle, Astronomy and Cosmology Shanghai Jiaotong University

On behalf of the PandaX collaboration

International workshop on DBD and neutrino Nov. 15-17, Osaka, Japan

A little bit MC — R&D on Xe136 0vββ search with Particle AND Astroparticle Xenon Observatory

Xiang Liu Institute of Nuclear, Particle, Astronomy and Cosmology Shanghai Jiaotong University

On behalf of the PandaX collaboration

International workshop on DBD and neutrino Nov. 15-17, Osaka, Japan

PANDAX at CJPL

The Layout of CJPL-I

Main hall: 6.5*6.5*40m Total Volume: ~4000m³

From Qian Yue

Workshop on Cosmogenic Activities and Backgrounds,

Berkeley, April 13-15, 2011

Dig the tunnel for CJPL in July,2009

The main hall of CJPL in June 2010

CJPL cosmic muon and rock

~7500 m.w.e. cosmic muon <100/m² year

Bq/kg	Ra226 (U238)	Th232	K40
CJPL	1.8±0.2	<0.27	<1.1
LNGS*	5.4 - 84	0.25 - 8.9	

* E. Bellotti et al., INFN/TC-85/19, October 1985.

Internal space

Inside the CJPL

PANDAX collaboration

Shanghai Jiaotong University Shanghai Institute of Applied Physics Shandong University Peking University University of Michigan University of Maryland

collaboration meeting May 8th, 2011

LXe dual-phase TPC

3D position reconstruction

position $\sigma \sim 3mm$ Fiducial volume, self-shielding

gamma event localized

Dual-phase TPC: single-/multi-site

Mean-free-path 1 MeV gamma: ~5.5cm 1 MeV neutron: ~10 - 30cm

gamma/neutron, multiple hits (neutron reduction factor 2)

WIMP, single hit

PMT & base

37 R11410 PMT

Inner TPC

Inner TPC

PMT under test

Test

- PMT performance at liquid Xenon temperature.
- Electronics and signal processing.

Cooling & purification system

Under construction

Background simulation

PMT Co60 induced background

MC simulation

MC simulation

stay tuned.....

Backup

MC simulation

isotope [mBq/PMT]	1inch	Xenon100 MC	3inch (MOD/Normal)
Th234 (U238)	<1.4 - <75	0.25	<95 / 50
Ra226 (U238)	0.12 - 0.6		<2.4 / 6.1
Ac228 (Th232)	0.087 - 0.5	0.46	<3.8 / <2.7
Th228 (Th232)	0.11 - 1.9		<2.6 / 3.0
U235	0.04 - 0.10		<4.3 / 3.1
K40	6 - 120	8.15	13 / 50
Co60	0.46 - 4.5	0.75	3.5 / 8.4
Cs137	0.027 - 17	0.17	<1.3 / <0.38

arXiv:1101.5831, 1101.3866

Dual-phase TPC: charge/light

WIMP direct detection methods

Direct detection challenges

WIMP signal rare, small, no feature

Xenon advantage

- noble gas, -100°C, relatively easy to handle

XENON100 results

Self-shielding

S2/S1

arXiv:1104.2549

Direct detection status

Direct detection status

Smaller σ , larger detector mass, lower bg rate.

Plan

TPC inside inner vessel

Support systems for ton-scale, allowing for fast upgrade

- Cooling and purification
- Shielding
- DAQ and slow control...

Phase approach:

Phase	l.	II	Ш
Total LXe [kg]	300	1300	2500
Target LXe [kg]	120	600	1500

Pancake TPC with high light yield

³⁷ R11410 PMT

Pancake advantage (I)

S1 light collection efficiency

XENON100 energy threshold: 8.7keVnr PANDAX expected : 3.6keVnr

Pancake advantage (II)

0.6 0.4 0.2 log₁₀ (S2/S1) 0 -0.2 -0.4 -0.6 -0.8 -1 -1.2 10 0 15 20 25 30 35 40 energy (S1 channel), keVee

XENON100 E_{drift}=0.5kV/cm 99% gamma rejected (at 50% WIMP efficiency)

PRL 105, 131302 (2010)

ZEPLIN-III E_{drift}=3.9kV/cm 99.9% gamma rejected

PRD 80, 052010 (2009)

Inner vessel (prototype)

Outer vessel

- OFHC, 1.85m high, 1.34m in diameter, 5cm thick, 4.4ton - Ready for leak test.

Many test/construction

Many more items under test/construction:

- HV feedthrough
- Signal feedthrough
- Small cooling and purification system
- Kr distiller
- Storage tank and recover system
- DAQ and slow control
- ...

PANDAX Shielding

Goal: <1 external bg event in 5-15keV per year

External Background Simulation

Require 1t FV, single-site, 99.5% S2/S1

events in 5-15keV per year:

	neutron	gamma
Rock+concrete	<0.0005	0.5
Cosmic muon	<0.02 (30% from Cu shielding)	
Shielding	0.03 (60% from Cu shielding)	0.6 (80% from Cu shielding)
Rn		0.01 (assume 1Bq/m3)

Goal: <1 external bg event in 5-15keV per year MC simulation: ~1.1

Cu radioactive levels

Radioactive elements:

isotope	PANDAX $[mBq/kg]$	Xenon100 $[mBq/kg]$ [2]
Ra228 (Th232)	< 0.36	0.021
Th228 ($Th232$)	< 0.51	
Ra226 (U238)	< 0.38	0.070
Pa234m (U238)	<9.0	
U235	< 0.86	0.0034
K40	$4{\pm}1$	0.023
Cs137	< 0.16	

surface?

Cosmogenic activation at sea level:

isotope	T1/2	measured [mBq/kg]	activation rate $[\#/day \cdot kg]$	saturation [mBq/kg]
Co60	5.27y	$0.20{\pm}0.09$	97.4 / 55.4	1.13
Co58	71.3d	1.2 ± 0.2	159.6 / 123.0	1.85
Co56	78.76d	$0.20{\pm}0.07$	22.9 / 20.0	0.27
Mn54	312.3d	$0.19{\pm}0.08$	32.5 / 27.7	0.38

BEGe for counting facility

Canberra BEGe3830

energy threshold 3keV

relative efficiency 34%

Energy [keV]	FWHM [keV]	
59.4	0.99	
661.5	1.46	
1173	1.88	
1332.5	1.91	
40.2 [pulser]	0.93	
630.0 [pulser]	0.95	
1237 [pulser]	1.02	

Counting Facility

- Shielded by 10cm OFHC Cu, 20cm Pb and 10cm PE
- Background count rate 1.5-2Hz
- Sensitivity ~10mBq (isotope-dependent)

Counting Facility

Start Counting

- Add air-tight glove-box

- Move to shallow underground
- Move to Jinping eventually.

soldering tin

PANDAX Expected Sensitivity

PandaX I:

- light yield: 5.0 pe/keVee (w/ field)
- SI energy range: 3-30 pe
- exposure: 25 kg x 300 days
- NR acceptance: 0.35
- estimated bkg events: 0.3

PandaX II:

- light yield: 2.5 pe/keVee (w/ field)
- SI energy range: 3-30 pe
- exposure: 300 kg x 300 days
- NR acceptance: 0.35
- estimated bkg events: 0.5

backup

Summary

- Exciting physics on dark matter direct detection.
- Liquid Xenon Dual-Phase a promising technique.
- Very strong competition.

Signal: phonon, scintillation & charge

time constants depend on gas (few ns/15.4µs Ne, 10ns/1.5µs Ar, 3/27 ns Xe)

scintillation & charge

(few ns/15.4µs Ne, 10ns/1.5µs Ar, 3/27 ns Xe)

Two-Phase Xenon TPC

Achieved upper limits

Leff

arXiv:1104.2587

Remove "leakage events"

PANDAX Phase I vs. Xenon100

	Xenon100	PANDAX
LXe Diameter [cm]	30	60
LXe Height [cm]	30	15
Cathode Voltage [kV]	-16	-75
Drift field [kV/cm]	0.53	5.0
Fiducial mass [kg]	40	30
S1 collection efficiency	24%(average)	57% (average)
Gamma S2/S1 rejection	99%	99.9% (expected)