Search for Charged Lepton Flavor Violation with Muons

Yoshitaka Kuno Department of Physics Osaka University

November 17th, 201 Osaka

Outline

Outline

- Why Charged Lepton Flavor Violation (CLFV)?
- CLFV and Neutrinos
- CLFV Processes with Muons
 - μ→eγ
 - µ-e conversion
- COMET (J-PARC E21)
- Other muon CLFV Processes
- Summary

charged lepton flavor violation

Why Charged Lepton Flavor Violation (CLFV)?

Quarks

Quarks

Neutrino mixing observed

Quarks

Quark mixing observed

Neutrino mixing observed

Charged lepton mixing not observed.

Quarks

P

Quark mixing observed

Leptons

Neutrino mixing observed

Charged lepton mixing not observed.

Charged Lepton Flavor Violation (CLFV)

Nobel Prize-wining class research

CLFV in the SM with massive neutrinos

CLFV in the SM with massive neutrinos

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{l} (V_{MNS})^*_{\mu_l} (V_{MNS})_{el} \frac{m_{\nu_l}^2}{M_W^2} \right|^2$$

CLFV in the SM with massive neutrinos

$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{l} (V_{MNS})^*_{\mu_l} (V_{MNS})_{el} \frac{m_{\nu_l}^2}{M_W^2} \right|^2$$

Observation of CLFV would indicate a clear signal of physics beyond the SM with massive neutrinos.

Rating of DNA of New Physics (a la Prof. Dr. A. Buras)

W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi, D.M. Straub, . Nucl.Phys.B830:17-94 ,2010.

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*	*	*	***	***	*	?
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

Different theoretical models

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\bigstar \bigstar \bigstar$ signals large effects, $\bigstar \bigstar$ visible but small effects and \bigstar implies that the given model does not predict sizable effects in that observable.

Rating of DNA of New Physics (a la Prof. Dr. A. Buras)

W. Altmannshofer, A.J. Buras, S. Gori, P. Paradisi, D.M. Straub, . Nucl.Phys.B830:17-94 ,2010.

	AC	RVV2	AKM	δ LL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*	*	*	***	***	*	?
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B \to K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \to e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

Different theoretical models

CLFV with muons get all three stars.

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\bigstar \bigstar \bigstar$ signals large effects, $\bigstar \bigstar$ visible but small effects and \bigstar implies that the given model does not predict sizable effects in that observable.

CLFV and Neutrinos

Why do we exist in the Universe?

Leptogenesis

Leptogenesis

Neutrino Seesaw Mechanism

How to Validate Neutrino Seesaw Mechanism?

How to Validate Neutrino Seesaw Mechanism?

Majorana Nature of Neutrinos

1

Neutrinoless Double Beta Decays

Neutrinoless double beta decays address whether neutrinos are Majorana-type or not?

How to Validate Neutrino Seesaw Mechanism?

Majorana Nature of Neutrinos

Neutrinoless Double Beta Decays

Neutrinoless double beta decays address whether neutrinos are Majorana-type or not?

2

51

Heavy Partner of Neutrinos

CLFV

Search for CLFV is sensitive to the energy scale of heavy right-handed neutrinos in the neutrino seesaw models.

if the two scales are well separated, CLFV is small. ~O(10⁻⁵⁴)

if the two scales are well separated, CLFV is small. $\sim O(10^{-54})$

In supersymmetric models, even if the two scales are well separated, large CLFV is expected.

le\

if the two scales are well separated, CLFV is small. $\sim O(10^{-54})$

In supersymmetric models, even if the two scales are well separated, large CLFV is expected.

Even without supersymmetric models, the two scales are close, large CLFV is expected.

M_R (right-handed neutrino mass)

A. Ibara, E. Molinaro, S.T. Petcov, Phys. Rev. D84 (2011) 013005

CLFV with TeV Seesaw (Type-I)

TeV seesaw type-I models predict sizable branching ratio of CLFV with right-handed neutrino mass of O(TeV).

CLFV Process with Muons

Charged Lepton Flavor Violation with Muons

$$\Delta L=1$$

$$\bullet \mu^+ \to e^+ \gamma$$

$$\bullet \mu^+ \to e^+ e^+ e^-$$

$$\bullet \mu^- + N(A, Z) \to e^- + N(A, Z)$$

$$\bullet \mu^- + N(A, Z) \to e^+ + N(A, Z-2)$$

$$\Delta L=2$$

•
$$\mu^+ e^- \to \mu^- e^+$$

• $\mu^- + N(A, Z) \to \mu^+ + N(A, Z - 2)$
• $\nu_\mu + N(A, Z) \to \mu^+ + N(A, Z - 1)$
• $\nu_\mu + N(A, Z) \to \mu^+ \mu^+ \mu^- + N(A, Z - 1)$

Charged Lepton Flavor Violation with Muons

$$\Delta L=1$$

$$\bullet \mu^+ \to e^+ \gamma$$

$$\bullet \mu^+ \to e^+ e^+ e^-$$

$$\bullet \mu^- + N(A, Z) \to e^- + N(A, Z)$$

$$\bullet \mu^- + N(A, Z) \to e^+ + N(A, Z-2)$$

$$\Delta L=2$$

$$\begin{split} \bullet \mu^+ e^- &\to \mu^- e^+ \\ \bullet \mu^- + N(A, Z) \to \mu^+ + N(A, Z - 2) \\ \bullet \nu_\mu + N(A, Z) \to \mu^+ + N(A, Z - 1) \\ \bullet \nu_\mu + N(A, Z) \to \mu^+ \mu^+ \mu^- + N(A, Z - 1) \end{split}$$

What is $\mu \rightarrow e\gamma$?

- Event Signature
 - $E_e = m_{\mu}/2$, $E_{\gamma} = m_{\mu}/2$ (=52.8 MeV)
 - angle θ_{µe}=180 degrees (back-to-back)
 - time coincidence

- Backgrounds
 - prompt physics backgrounds
 - radiative muon decay
 µ→evvγ when two
 neutrinos carry very
 small energies.
 - accidental backgrounds
 - positron in $\mu \rightarrow evv$
 - photon in µ→evvγ or photon from e⁺e⁻ annihilation in flight.

MEG at PSI and 2009/2010 Data

-2[∟] -1

-0.9995 -0.999 -0.9985 -0.998

 $\cos\Theta_{e\gamma}$

-2₁ -1 -0.999 -0.9985 -0.998 -0.9995 $\cos\Theta_{e\gamma}$

55

56

MEG at PSI and 2009/2010 Data

Goal is 10⁻¹³

What is Muon to Electron Conversion?

1s state in a muonic atom

nuclear muon capture

$$\mu^- + (A, Z) \longrightarrow \nu_\mu + (A, Z - 1)$$

Neutrino-less muon nuclear capture

$$\mu^- + (A,Z) \rightarrow e^- + (A,Z)$$

Event Signature : a single mono-energetic electron of 100 MeV Backgrounds: (1) physics backgrounds (from

muons, such as decay in orbit)
(2) beam-related backgrounds
(radiative pion cap., muon
decay in flight...)
(3) cosmic rays, false tracking

Physics

if photonic contribution dominates,

$$\frac{B(\mu N \to eN)}{B(\mu \to e\gamma)} = \frac{G_F^2 m_\mu^4}{96\pi^3 \alpha} \times 3 \times 10^{12} B(A, Z)$$
$$\sim \frac{B(A, Z)}{428}$$

- for aluminum, about 1/390
- for titanium, about 1/230

Many muons needed

```
But, <100 events at COMET
```

B(µN→eN) ~

6.2 x10⁻¹⁵

Physics

if photonic contribution dominates,

$$\frac{B(\mu N \to eN)}{B(\mu \to e\gamma)} = \frac{G_F^2 m_\mu^4}{96\pi^3 \alpha} \times 3 \times 10^{12} B(A, Z)$$
$$\sim \frac{B(A, Z)}{428}$$

- for aluminum, about 1/390
- for titanium, about 1/230

B(µ→eγ) ~

2.4x10⁻¹²

Many muons needed

But, <100 events at COMET

Experimental

- µ→eγ is accidental background limited and cannot take high beam rates.
 BR<10⁻¹³ would be the best.
- µ→e conversion does not have accidental background and can take high beam rate.

•BR<10⁻¹⁸ would be possible.

B(µN→eN) ~

6.2 x10⁻¹⁵

Physics

if photonic contribution dominates,

$$\frac{B(\mu N \to eN)}{B(\mu \to e\gamma)} = \frac{G_F^2 m_\mu^4}{96\pi^3 \alpha} \times 3 \times 10^{12} B(A, Z)$$
$$\sim \frac{B(A, Z)}{428}$$

- for aluminum, about 1/390
- for titanium, about 1/230

B(μ→eγ) ~

2.4x10⁻¹²

Many muons needed

```
But, <100 events at COMET
```

Experimental

- µ→eγ is accidental background limited and cannot take high beam rates.
 BR<10⁻¹³ would be the best.
- µ→e conversion does not have accidental background and can take high beam rate.
 BR<10⁻¹⁸ would be possible.

The next step would be µ-e conversion.

Previous Measurements

SINDRUM-II (PSI)

PSI muon beam intensity ~ 10⁷⁻⁸/sec beam from the PSI cyclotron. To eliminate beam related background from a beam, a beam veto counter was placed. But, it could not work at a high rate.

Published Results (2004)

$$B(\mu^{-} + Au \to e^{-} + Au) < 7 \times 10^{-13}$$

Improvements for Signal Sensitivity

To achieve a single sensitivity of 10⁻¹⁷, we need

10¹¹ muons/sec (with 10⁷ sec running)

whereas the current highest intensity is 10⁸/sec at PSI.

Pion Capture and Muon Transport by Superconducting Solenoid System

(10¹¹ muons for 50 kW beam power)

Improvements for Background Rejection

Beam-related backgrounds

Muon DIF

background

Beam pulsing with separation of 1µsec

measured between beam pulses

proton extinction = # protons between pulses/# protons in a pulse < 10⁻⁹

Muon DIO background - I low-mass trackers in vacuum & thin target improve resolution

> curved solenoids for momentum selection

eliminate energetic muons (>75 MeV/c)

base on the MELC proposal at Moscow Meson Factory

µ-e conversion : Mu2e at Fermilab

 $B(\mu^{-} + Al \to e^{-} + Al) = 2.6 \times 10^{-17}$ $B(\mu^{-} + Al \to e^{-} + Al) < 6 \times 10^{-17} \quad (90\% C.L.)$

- Reincarnation of MECO at BNL.
- Antiproton buncher and accumulator rings are used to produce a pulsed proton beam.
- Approved in 2009, and CD0 in 2009.

COMET@J-PARC

µ-e conversion : COMET (E21) at J-PARC

COMET Collaboration List

84 people from 20 institutes (August 2011)

Imperial College London, UK A. Kurup, J. Pasternak, Y. Uchida, P. Dauncey, U. Egede, P. Dornan University College London, UK M. Wing, M. Lancaster, R. D'Arcy, S. Cook University of Glasgow P. Soler JINR, Dubna, Russia
V. Kalinnikov, A. Moiseenko,
G. Macharashvili, J. Pontecorvo,
B. Sabirov, Z. Tsamaiaidze,
and P. Evtukhouvich
BINP, Novosibirsk, Russia
D. Grigorev, A. Bondar, G. Fedotovich,
A Ryzhenenkov, D. Shemyakin
ITEP, Russia
M. Danilov, A. Drutskoy, V. Rusinov,
E. Tarkovsky

Department of physics and a University of British Columb Vancouver, Canada D. Bryman TRIUMF, Canada T. Numao, I. Sekachev

Department of Physics, Brookhaven National Laboratory, USA R. Palmer, Y. Cui Department of Physics, University of Houston, USA E. Hungerford, K. Lau

T. Ota + + + + Tbilisi State University M. Nioradze, Ni. Tavaraya

MPI-Munich

Ni. Tsverava Y. Tevxadze Institute for Nuclear Science and Technology Vo Van Thuan, T.P.H. Hoang University of Science, HoChi Minh Chau Vau Tao

University of Malaya Wan Ahmad Tajuddin University Technology Malaysia Md. Imam Hossain Kyoto University, Kyoto, Japan

Y. Iwashita, Y, Mori, Y. Kuriyama, J.B Lagrange
Department of Physics, Osaka University, Japan
M. Aoki, T. Hiasa, T. Hayashi, S. Hikida, Y. Hino, T. Itahashi, S. Ito, Y. Kuno, H. Nakai, T. H. Nam, H. Sakamoto, A. Sato, N.M.Truong
Department of Physics, Saitama University, Japan
M. Koike, and J. Sato
High Energy Accelerator Research Organization (KEK), Japan
Y. Arimoto, K. Hasegawa, Y. Igarashi, M. Ikeno, S. Ishimoto, Y. Makida, S. Mihara, H. Nishiguchi, T. Nakamoto, T. Ogitsu, C. Ohmori, Y. Takubo, M. Tanaka, M. Tomizawa, T. Uchida,

A. Yamamoto, M. Yamanaka, M. Yoshida, M. Yoshii, K. Yoshimura

Comparison : COMET vs. Mu2e

	Detector Solenoid Tracker Solpping Tracker Solpping Tracker Solpping Tracker Colimators Colimators Protuce Protuce Tracker Production Solenoid Production Solenoid Pro	
	Mu2e@FNAL	COMET@J-PARC
muon beamline	S-shape	C-shape
electron spectrometer	Straight solenoid	Curved solenoid

Comparison : COMET vs. Mu2e

	<complex-block></complex-block>		Selection of low
	Mu2e@FNAL	COMET@J-PARC	momentum muons
muon beamline	S-shape	C-shape	eliminate background from
electron spectrometer	Straight solenoid	Curved solenoid	muon decay in flight

Comparison : COMET vs. Mu2e

Signal Sensitivity (preliminary) - 2x10⁷ sec

Signal Sensitivity (preliminary) - 2x10⁷ sec

Single event sensitivity

$$B(\mu^- + Al \to e^- + Al) \sim \frac{1}{N_\mu \cdot f_{cap} \cdot A_e},$$

- N_μ is a number of stopping muons in the muon stopping target. It is 2x10¹⁸ muons.
- f_{cap} is a fraction of muon capture, which is 0.6 for aluminum.

total protons	8.5x10 ²⁰
muon transport efficiency	0.008
muon stopping efficiency	0.3
# of stopped muons	2.0x10 ¹⁸

• A_e is the detector acceptance, which is 0.04.

 $B(\mu^{-} + Al \to e^{-} + Al) = 2.6 \times 10^{-17}$ $B(\mu^{-} + Al \to e^{-} + Al) < 6 \times 10^{-17} \quad (90\% C.L.)$

Background Rates

Radiative Pion Capture	0.05
Beam Electrons	$< 0.1^{\ddagger}$
Muon Decay in Flight	< 0.0002
Pion Decay in Flight	< 0.0001
Neutron Induced	0.024
Delayed-Pion Radiative Capture	0.002
Anti-proton Induced	0.007
Muon Decay in Orbit	0.15
Radiative Muon Capture	< 0.001
μ^- Capt. w/ n Emission	< 0.001
μ^- Capt. w/ Charged Part. Emission	< 0.001
Cosmic Ray Muons	0.002
Electrons from Cosmic Ray Muons	0.002
Total	0.34

[‡] Monte Carlo statistics limited.

beam-related prompt backgrounds

beam-related delayed backgrounds

intrinsic physics backgrounds

cosmic-ray and other backgrounds

Expected background events are about 0.34.

R&D Milestones for COMET

$$B(\mu^- + Al \to e^- + Al) < 10^{-16}$$

single event sensitivity: 2.6x10⁻¹⁷

R&D Milestones for COMET

$B(\mu^{-} + Al \to e^{-} + Al) < 10^{-16}$

single event sensitivity: 2.6x10⁻¹⁷

Reduction of Backgrounds

Beam pulsing

measurement is done between beam pulses to reduce beam related backgrounds. And proton beam extinction of $<10^{-9}$ is required.

R&D Milestones for COMET

 $B(\mu^- + Al \to e^- + Al) < 10^{-16}$

single event sensitivity: 2.6x10⁻¹⁷

Reduction of Backgrounds

Beam pulsing

measurement is done between beam pulses to reduce beam related backgrounds. And proton beam extinction of $<10^{-9}$ is required.

2) Increase of Muon Intensity

Pion capture system

X10³

high field superconducting solenoid magnets surrounding a pion production target

1

J-PARC MR proton extinction ~ O(10⁻⁷)

1

COMET is confident to achieve proton extinction of $<O(10^{-9})$.

Pion Capture System@MuSIC

Demonstration of Pion Capture System

RCNP cyclotron 400 MeV, 1µA

MuSIC@Osaka-U

2

Pion Capture System@MuSIC

Demonstration of Pion Capture System

RCNP cyclotron 400 MeV, 1µA

MuSIC@Osaka-U

preliminary

cf. 10⁸/s for 1MW @PSI Req. of x10³ achieved...

Measurements on June 21, 2011 (6 pA)

Long-term Future Prospect: from COMET to PRISM

Long-term Future Prospect: from COMET to PRISM

$B(\mu^{-} + Al \to e^{-} + Al) < 10^{-16}$

without a muon storage ring.
with a slowly-extracted pulsed proton beam.
doable at the J-PARC NP Hall.
regarded as the first phase / MECO type
Early realization
Long-term Future Prospect: from COMET to PRISM

$B(\mu^- + Al \to e^- + Al) < 10^{-16}$

without a muon storage ring.

- with a slowly-extracted pulsed proton beam.
- doable at the J-PARC NP Hall.
- regarded as the first phase / MECO type
- Early realization

$B(\mu^- + Ti \to e^- + Ti) < 10^{-18}$

• with a muon storage ring.

- with a fast-extracted pulsed proton beam.
- •need a new beamline and experimental hall.
- •regarded as the second phase.
- •Ultimate search

R&D on the PRISM-FFAG Muon Storage Ring at Osaka University

demonstration of phase rotation has been done.

Other CLFV Processes

Proposed Search for $\mu \rightarrow eee$ (Br<10⁻¹⁶) at PSI

New Proposal from Univ. Heidelberg

(presented by N, Berger at NuFACT11)

- High resolution silicon pad detectors for tracking and SciFi for timing
- Double-cone shaped target
- Small size detector
- Vertex can be determined by extrapolation of tracks

Search for $\mu \rightarrow eee$ (Br<10⁻¹⁶) at MuSIC, Osaka

budget request being processed.

Pion capture system

Proton beam

Search for $\mu^- + e^- \rightarrow e^- + e^-$ in a muonic atom

1s state in a muonic atom

Search for $\mu^{-} + e^{-} \rightarrow e^{-} + e^{-}$ in a muonic atom

ex. Z=82 (Pb), the overwrap increases by a factor of 5x10⁵.over the muonium.

M. Koike, M. Yamanaka, Y. Kuno and J. Sato, Phys. Rev. Lett. 105 (2010) 121601

Summary

Summary

- CLFV would give the best opportunity to search for new physics beyond the SM.
- CLFV has strong relations to neutrino physics, and in particular to DBD.
- Various muon CLFV processes should be pursued to uncover physics behind.
- COMET@J-PARC and Mu2e@FNAL are aiming at S.E. sensitivity of 3x10⁻¹⁷.
- R&D on PRISM/PRIME for S.E. sensitivity of 3x10⁻¹⁹, is on-going.
- MuSIC project at Osaka University produces 10⁸ muons/s with 400 W proton beam, and µ→eee can be considered.
- Discovery potential for CLFV is strong!

