Experimental review of DBD and KamLAND-Zen experiment

Kunio Inoue RCNS, Tohoku University

Double Beta Decay and Underground Science, Hankyu Sanwa Hall, 8 November 2016

Milestone

Experimental milestone has been a verification of KK-claim. KL-Zen+EXO-200 refuted it with fairly robust NME assumption. GERDA then clearly rejected it using the same ⁷⁶Ge. What's next? full coverage of Quasi Degenerate \rightarrow next milestonefull coverage of Inverted Hierarchy \rightarrow next gen. exp.full coverage of mlightest~0 (below 1 meV) \rightarrow very difficult

We need to propose a future plan seeking below 10 meV.

comparison of double beta decay nuclei

Nucleas	$T_{1/2}^{0\nu}(50{\rm meV})$	$T_{1/2}^{2\nu}$ measured (year)	Nat. Abundance (%)	Q-value (keV)	
⁴⁸ Ca→ ⁴⁸ Ti		$(4.2^{+2.1}$ -1.0) ×10 ¹⁹	0.19	(4271)	max. Q, fast 2v
$^{76}\text{Ge}{\rightarrow}^{76}\text{Se}$	0.86×10^{27}	$(1.5\pm0.1) \times 10^{21}$	7.8	2039	semiconductor
⁸² Se→ ⁸² Kr	2.44×10^{26}	$(0.92\pm0.07) \times 10^{20}$	9.2	2995	
⁹⁶ Zr→ ⁹⁶ Mo	0.98×10^{27}	$(2.0\pm0.3) \times 10^{19}$	2.8	3351	
$^{100}Mo \rightarrow ^{100}Ru$	2.37×10^{26}	$(7.1\pm0.4) \times 10^{18}$	9.6	3034	fast 2v
$^{116}Cd \rightarrow ^{116}Sn$	2.86×10^{26}	$(3.0\pm0.2) \times 10^{19}$	7.5	2805	
$^{128}\text{Te} \rightarrow ^{128}\text{Xe}$	4.53×10^{27}	$(2.5\pm0.3) \times 10^{24}$	31.7	867	
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	2.16×10^{26}	$(0.9\pm0.1) \times 10^{21}$	34.5	2529	large nat. abundance
¹³⁶ Xe→ ¹³⁶ Ba	4.55×10^{26}	$(2.3\pm0.1) \times 10^{21}$	8.9	2476	slow 2v, rare gas
$^{150}\text{Nd} \rightarrow ^{150}\text{Sm}$	2.23×10 ²⁵	$(7.8\pm0.6) \times 10^{18}$	5.6	3367	0v, fast $2v$

Notable nuclei

⁴⁸Ca highest Q, isotope enrichment is an issue \rightarrow lida's talk

⁷⁶Ge semiconductor

¹³⁶Xe easy enrichment / purification, various detector technology
¹³⁰Te high natural abundance

 ^{150}Nd fast 0v

So far, leading experiments are using technologies;

Ge semiconductor (GERDA/Majorana) Tracking (NEMO-3) bolometer (CUORE) liquid xenon TPC (EXO-200) LS with xenon (KamLAND-Zen)

In addition to the above, next generation uses;

doped LS (SNO+) hybrid bolometer (CUPID, AMoRE, CANDLES) high pressure gas TPC (NEXT, PandaX-III, AXEL)

Let me explain my view of their pros and cons, briefly.

$GERDA \quad (\rightarrow \text{Salamida's next talk})$

pros

high resolution (no 2v BG)costly enrichmentactive shielding-xternal-gamma/neutronPSDsurface-BGeasier cooling (in comparison with bolometers)

cons

T_{1/2}>5.2×10²⁵yr (90%CL)

neutrino 2016

$NEMO-3 \quad (\rightarrow \text{Vilela's talk})$

Isotope	Mass [g]	$Q_{\beta\beta}$ [keV]	Sig/Bkg	$T_{1/2}$ [years]
¹⁰⁰ Mo	6914	3034	76	7.16 ± 0.01 (stat) ± 0.54 (syst) 10^{18}
⁸² Se	932	2995	4	$9.6 \pm 0.1 \text{ (stat)} \pm 1.0 \text{ (syst)} 10^{19}$
¹³⁰ Te	454	2529	0.25	$7.0 \pm 1.4 \ 10^{20}$
116Cd	405	2805	10.3	$2.9 \pm 0.3 \ 10^{19}$
¹⁵⁰ Nd	37.0	3368	2.8	$9.1 \pm 0.7 \ 10^{18}$
⁹⁶ Zr	9.43	3350	1.0	$2.35 \pm 0.21 \ 10^{19}$
⁴⁸ Ca	6.99	4274	6.8	$4.4 \pm 0.6 \ 10^{19}$

pros

tracking various nuclei

helpful for reducing
uncorrelated NME uncertainty
provides additional sensitivity
to resolve underlying physics
clear signature when found

cons

relatively poor energy resolution limited scalability

Super NEMO is aiming at 50~100meV sensitivity (with 500kg · yr)

$CUORE \quad (\rightarrow \text{O'Donnell's talk})$

pros

high resolution ideally with various nuclei scintillation / phonon hybrid detection possible

cons

costly low T cavity (makes active shielding expensive or difficult)

(Vignati's talk) CUORE/CUPID are aiming at 50~130, O(10) meV sensitivity (CUORE Upgrade with Particle IDentification ← scintillation hybrid)

AMoRE, CANDLES are also pursuing Hybrid concept. (Park's talk) (lida's talk)

EXO-200 (→Sinclair's talk)

pros

compact monolithic detector (scalability) 3D reconstruction (BG rejection) sufficient energy resolution purification possible cons

14m

Radon emanation massive structure

13m

nEXO target sensitivity below 10 meV widely covers NH.

KamLAND-Zen

pros

scalability (380kg \rightarrow 750kg planned) all active detector (²⁰⁸Tl is above ROI) large active shielding minimum detector material (all $\beta \& r$ detectable) on/off measurement in-situ purification

cons

low resolution (2 ν BG) low concentration high muon rate (spallation BG)

20meV

8meV?

So far providing the world best limit T_{1/2}>1.07×10²⁶yr (90%CL) m_{ee} < 61~165 meV future target KL-Zen 800 → KL2-Zen → SuperKL-Zen?

50meV

SNO+ (\rightarrow Singh's talk)

SNO+ Phase I 0.5wt% Te \rightarrow 1333kg ¹³⁰Te (260kg FV) expected to start in early 2018

5 yr expected sensitivity 1.96×10²⁶yr

(similar to KL-Zen 800)

11

Phase II aiming at 10²⁷yr sensitivity

cons

pros

negligible spallation BG huge target mass all active low concentration (tough after-purification) moderated energy resolution

There are only a few proposals those offer NH sensitivity, but they seem to be very expensive.

Integration of complementary technologies and multiple collaborations may be necessary. Let's think big!!

More to concern

factor 3 uncertainty of NME ---> requires 10_(BG free)~100 times more exposure

Experimental / theoretical efforts to reduce NME uncertainty are very important.

Ultra-low BG underground (& huge) experiment is necessary

Geodynamical

Geochemical

Cosmochemical

crust uncertainty

10

 \overline{v}_e Flux (× 10⁶ cm⁻²s⁻¹)

Ο

2016 Preliminary Result

KamLAND 68.3% C.L

Preliminary

30

20

Radiogenic Heat from 238U + 232Th (TW)

20

30

It is KamLAND !!

KamLAND-Zen

Zero Neutrino double beta decay search

Advantages of using KamLAND

- running detector
 - \rightarrow relatively low cost and quick start
- huge and clean (1200m³, U: 3.5x10⁻¹⁸g/g, Th: 5.2x10⁻¹⁷)
 → negligible external gamma

(Xe and mini-balloon need to be clean)

- Xe-LS can be purified, mini-balloon replaceable if necessary, with relatively low cost
 - \rightarrow highly scalable (up to several tons of Xe)
- No escape or invisible energy from β , γ \rightarrow BG identification relatively easy
- anti-neutrino observation continues
 - → geo-neutrino w/o Japanese reactors

320kg 90% enriched ¹³⁶Xe installed for phase-I and 380kg for phase-II

minimum inactive detector material basically $25\,\mu$ m-t balloon film only

KamLAND-Zen started in 2011 only 2 years from initial funding (very quick!)

Unexpected BG has found

KamLAND-Zen Phase I (320kg xenon loading)

What can we do?

purification !!

fine binning of volume

triple fold coincidence

future task

for ¹⁰C rejection $\tau = 208 \,\mu s$ ¹⁰C $\tau = 27.8 \, {\rm s}$

tripe fold coincidence

dead time

free

MoGURA

We have acquired phase-2 data (after purification) from December 11 2013 to October 27, 2015; total livetime of 534.5 days (cf. T1/2(110mAg)=250 days) and exposure of 504 kg-yr.

Balloon surface has higher BG rate but still provides some sensitivity.

In order to improve the sensitivity, we have performed all volume and time-binned analysis.

Source calibration

(Oct. 2015)

×10³

1.17

4.947 MeV

5

visible energy [MeV]

R < 1.2 m

6 7 8 visible energy [MeV]

1.5

4

Energy resolution in phase-2: $\sim 7.3\%/\sqrt{E}$

40 equal-volume bins

Energy and radial distributions are well-reproduced by known BGs. 25

Kown BG other than ^{110m}Ag are ~11 events in each periods

Event summary 2.3 < E < 2.7 MeV, R < 1 m

		Period-1	Period-2		
	((270.7 days)	(263.8 days)		
Observed events		22	_	11	
Background	Estimated	Best-fit	Estimated		Best-fit
¹³⁶ Xe $2\nu\beta\beta$		5.48			5.29
		Residual radioactivity in Xe-LS			
²¹⁴ Bi (²³⁸ U series)	0.23 ± 0.04	0.25	0.028 ± 0.005		0.03
²⁰⁸ Tl (²³² Th series)		0.001			0.001
^{110m}Ag		8.5			0.0
0		External (Radioactivity in IB)			
²¹⁴ Bi (²³⁸ U series)		2.56			2.45
²⁰⁸ Tl (²³² Th series)		0.02			0.03
^{110m}Ag		0.003			0.002
0		Spallation products			
¹⁰ C	2.7 ± 0.7	3.3	2.6 ± 0.7		2.8
⁶ He	0.07 ± 0.18	0.08	0.07 ± 0.18		0.08
$^{12}\mathbf{B}$	0.15 ± 0.04	0.16	0.14 ± 0.04		0.15
¹³⁷ Xe	0.5 ± 0.2	0.5	0.5 ± 0.2		0.4

Results on $0\nu 2\beta$

Phase-1 & 2 combined limit

 $\langle m_{\beta\beta} \rangle < (61 - 165) \,\mathrm{meV}$

Big leap toward IH !!

Our challenge continues!

- We have purchased 800 kg of enriched xenon in total.
- We have fabricated a larger mini-balloon with better measures against dusts.
- We will resume the search with 750 kg of xenon. To be called as "KamLAND-Zen 800".
- (Expected sensitivity is below 50 meV hoping to cover Yanagida's prediction.)

Mini-balloon has been extracted. (Dec. 2015)

teflation

for tank investigation required by law

Xenon has been recovered during recirculation and deflation of the mini-balloon.

2nd mini-balloon fabrication

cleaning, cleaning and cleaning as usual

Example of improvements before after

after Leak check and repair

New mini-balloon has been deployed and inflated with "dummy" LS in last August

through characterization of mini-balloon

We confirmed that the mini-balloon is cleaner !!

Measures we took worked! \rightarrow see Hachiya's poster

At the same time, we noticed; \rightarrow further information Obara's poster

Indications of leak;

- camera image
- · load cell
- balloon shape reconstruction with ²¹⁰Po events
- ²²²Rn decay rate
- mixture of KL-LS and dummy-LS by gas-chromatography

target sensitivity 8 meV

R&D for KamLAND2-Zen and future

\bigcirc winston cone

⊖ HQE-PMT

Summary

- $\cdot 0\nu 2\beta$ experiments very briefly reviewed
- Results from KL-Zen Phase-2 (534.5 days, 380 kg) presented
 ^{110m}Ag has been successfully reduced.
 improved analysis: 40 equal bins for volume, 2 time bins
- Phase-1 & 2 combined result for $0\nu 2\beta$ of ¹³⁶Xe

$$T_{1/2}^{0
u} > 1.07 \times 10^{26} \,\mathrm{yr}$$

 $\langle m_{\beta\beta} \rangle < (61 - 165) \,\mathrm{meV}$ [Prl117, 082503]

KamLAND-Zen 800 is planned

Mini-balloon for 750kg once installed, but there was a leak. (\rightarrow Obara's poster) Balloon film was cleaner than previous installation. (\rightarrow Hachiya's poster) Target sensitivity is below 50 meV, and next deployment will be in autumn 2017.

• R&D for KamLAND2-Zen is going well.

Target sensitivity is below 20 meV.

Thank you!