

collaboration

Recent results from NEMO-3 and status of SuperNEMO

Cristóvão Vilela, for the NEMO-3 and SuperNEMO collaborations cristovao.vilela@stonybrook.edu

2010 – 2015:

Currently at:

* Stony Brook University

International workshop on double- $\boldsymbol{\beta}$ decay and underground Science

Osaka University, November 8th 2016

Outline

- Neutrinoless double-β decay
- The NEMO-3 experiment
- Latest results from NEMO-3
- Status of the SuperNEMO Demonstrator

SuperNEMO collaboration, Aussois 2015

Neutrinoless double-ß decay

- Lepton number violating process
 - ΔL= 2
- Several underlying mechanisms can contribute:
 - Exchange of light Majorana neutrinos
 - Right-handed currents, R-parity violating supersymmetry, etc

Neutrinoless double-ß decay

- To distinguish between the mechanisms want:
 - Measurements of electron kinematics -
 - Measurements of multiple isotopes -
- Equivalent measurements of two-neutrino modes help constrain nuclear theory

Tracker & calorimeter technique

- The tracker and calorimeter approach has two main advantages:
 - Event topology is fully reconstructed
 - Powerful background suppression
 - Control samples for background measurement
 - Measurement of individual electron kinematics
 - Source and detector are independent
 - (nearly) Free choice of isotope
- The main disadvantage is worse energy resolution ٠ compared to homogeneous detectors

- Use tracker signature to identify:
 - e^{-}/e^{+}
 - α from ²¹⁴Bi-²¹⁴Po decays
- Calorimeter timing used to distinguish between events with internal and external origin to the source

ristóvão Vilela - DBD16

The NEMO-3 experiment

- Operated from February 2003 to January 2011
- In the Laboratoire Souterrain de Modane
 - 4800 m.w.e. overbuden
- Hosted **10 kg** of double-β decay **sources**
 - Seven different isotopes -
 - Mostly ¹⁰⁰Mo
- Cu structure surrounded by Fe shielding
- Paraffin, wood, borated water for neutron moderation and absorption
- Tent flushed with ²²²Rn-free air installed in 2004

The NEMO-3 detector

Backgrounds in NEMO-3

Radon backgrounds in NEMO-3

- The β -decay of ²¹⁴Bi is a significant background in NEMO-3 analyses
- Arises from:
 - Internal ²³⁸U chain contamination of the source
 - Emanation of ²²²Rn into the tracking volume and deposition of progeny on detector surfaces
 - Greatly reduced by surrounding the detector with ²²²Rn-free air

- ²²²Rn activity measured by selecting events with an e⁻ and a delayed α track
- Length of α track used to discriminate between **bulk** and **surface** contamination

Search for $0\nu\beta\beta$ in ¹⁰⁰Mo

- Backgrounds constrained in control and signal channels
- Limit on Majorana mass **competitive** with best limits in the field
 - With only 7 kg of isotope
- No events observed above 3.2 MeV for full 34 kg yr exposure
- Competitive limits also placed on:
 - R-parity violating couplings
 - Right handed current couplings
 - Majoron v coupling

$$T_{1/2}^{0\nu} > 1.1 \times 10^{24} \text{ yr } (90\% \text{ CL})$$

 $\langle m_{\beta\beta} \rangle < 0.3 - 0.6 \text{ eV}$

Double-β decay of ⁴⁸Ca

Highest Q_{ββ} of all 0vββ isotopes at 4.3 MeV
 Doubly magic and low Z: lends itself to precise nuclear shell model calculations

Double-β decay of ¹⁵⁰Nd

• Largest phase space factor of any 0νββ candidate isotopes

• High $Q_{\beta\beta}$ at 3.4 MeV

• Most precise measurement of $2\nu\beta\beta$ to date

 $T_{1/2}^{2\nu} = [9.34 \pm 0.22 (\text{stat.}) {}^{+0.62}_{-0.60} (\text{syst.})] \times 10^{18} \,\text{yr}$

Double-β decay of ¹¹⁶Cd

- Isotope of interest for future experiments (pixelated CdZnTe)
- $Q_{\beta\beta} = 2.8 \text{ MeV}$
- Can test Higher States Dominance vs Single State Dominance

 $T_{1/2}^{2\nu} = [2.74 \pm 0.04 (\text{stat.}) \pm 0.18 (\text{syst.})] \times 10^{19} \,\text{yr}$

Multivariate analyses

- World's first 0vββ searches using multivariate analysis methods
- Boosted Decision Trees used with 10 kinematic variables

Quadruple-β decay of ¹⁵⁰Nd

- Heeck & Rodejohann pointed out that $\Delta L = 4$ processes are possible with **Dirac** neutrinos EPL 103 (2013) 32001
- One of these processes is **quadruple**-β decay
 - The best candidate is ${}^{150}Nd \rightarrow {}^{150}Gd + 4e^-$ with $Q_{4\beta} = 2.08 \text{ MeV}$

• Combination with other channels yields world's first limit on this process:

 $T_{1/2}^{0\nu4\beta} > 2.6 \times 10^{21} \text{ yr } (90\% \text{ CL})$

 $4.3\times 10^{21}~{\rm yr}$ expected

Cristóvão Vilela - DBD16

Only 4 times worse than ¹⁰⁰Mo with <15% of the mass

The SuperNEMO Demonstrator

- Build on the tracking and calorimetry technique honed in NEMO-3
- Modular design with planar geometry
- Much **stricter radiopurity** constraints
- Much better energy resolution
- ⁸²Se source to reduce the $2\nu\beta\beta$ background

- First stage is to prove radiopurity requirements can be achieved by building the **Demonstrator module**
 - 7 kg of isotope
 - Reach $T_{1/2} > 6.5 \times 10^{24}$ yr in 2.5 yr

Tracker construction

- Geiger-mode multi-wire drift chamber
- Restricted set of materials:
 - Cu, steel, duracon
- Robotic construction of 2034 tracker cells
 - ~15000 wires
- Radiopure gas delivery system
- Radon sealing
- Ultra-clean construction, assembly and testing conditions

Cell production complete Dead channel rate ~1% (most recoverable)

Radon mitigation

Source foil production

- The source is composed of 36 strips
 - Each 2.7 m x 13 cm
- Yielding a **total** of **7 kg** of ⁸²Se
- The foils are made of a mixture of enriched Se powder and PVA
 - Source foil support structure includes automatic deployment system for calibration sources
 - Source foil **production** is **ongoing**
- Strips are measured in parallel with production in **BiPo-3**

Finish production and installation in early 2017

BiPo-3

- Measure ²³²Th and ²³⁸U chains contamination with e⁻-α delayed coincidence
- ²¹²Bi-²¹²Po (²⁰⁸Tl):
 - 2 μBq / kg
- ²¹⁴Bi-²¹⁴Po:
 - 10 μBq / kg

Calorimeter construction

- Polystyrene scintillator blocks
- 8" high QE radiopure PMTs
- FWHM_E = 8.0 8.3 % @ 1 MeV
 4.6 % @ ⁸²Se Q_{ββ}
- $\sigma_t = 400 \text{ ps} @ 1 \text{ MeV}$
- Calibration systems maintain stability to better than 1%
 - Validation with detailed optical simulations

8" PMT & PS block

Demonstrator integration

- Half of the detector is **in place** at LSM
- Remaining components of the detector will be delivered over the next few months
- Demonstrator module will be complete by early 2017

SuperNEMO sensitivity

NEMO-3		SuperNEMO	Status
¹⁰⁰ Mo	isotope	⁸² Se (or other, e.g. ¹⁵⁰ Nd)	✓ (7 kg)
7 kg	isotope mass	7 → 100 kg	\checkmark
5 mBq/m ³	radon	0.15 mBq/m ³	\checkmark
²⁰⁸ TI: 100 µBq/kg ²¹⁴ Bi: 300 µBq/kg	internal contamination	²⁰⁸ Tl ≤ 2 µBq/kg ²¹⁴ Bi ≤ 10 µBq/kg	in progress
14% @ 1 MeV	FWHM	8% @ 1 MeV	\checkmark
Demonstrat 17.5 kg $T_{1/2}^{0\nu} > 6.$ $\langle m_{\nu} \rangle < 0.5$	or Module .yr : 5×10^{24} yr $20 - 0.40$ eV $\langle r$	Full SuperNEMO 500 kg.yr : $T_{1/2}^{0\nu} > 10^{26}$ yr $m_{\nu} \rangle < 50 - 100$ meV	<image/>

November 8th 2016

Summary

- The NEMO-3 experiment has produced a wealth of physics results, with data analysis still ongoing
 - Competitive $0\nu\beta\beta$ limit with the ¹⁰⁰Mo source: $\langle m_{\beta\beta} \rangle < 0.3 0.6 \text{ eV}$
 - Most of the world's best measurements of $2\nu\beta\beta$ half-lives
 - Unique physics, such as the $0v4\beta$ search
 - Advanced analysis techniques, such as the first use of multivariate methods in $0\nu\beta\beta$ searches
- The SuperNEMO Demonstrator construction is close to completion
 - On track to achieve the strict radiopurity goals

Thank you

supernemo

collaboration