Low background DBD search in CANDLES

Takashi Iida (Osaka) for the CANDLES collaboration

2016 Nov. 8th DBD16 @Osaka University

<u>Outline</u>

- The CANDLES experiment
- Progress from the last DBD
- Background and its reduction
- Sensitivity for $0\nu\beta\beta$
- Future R&D
- Summary

The CANDLES experiment

CAlcium fluoride for studies of Neutrino and Dark matters by Low Energy Spectrometer

Double beta decay sensitivity

<u>OKamLAND</u>

 $0\nu\beta\beta$ search with ¹³⁶Xe **World best limit on 0\nu\beta\beta** T_{1/2} > 1.1 × 10²⁶ [year] \rightarrow m_{ββ} < 61 – 165 meV

<u>OCANDLES</u>

 $0\nu\beta\beta$ search with ⁴⁸Ca Current sensitivity on $0\nu\beta\beta$ T_{1/2} ~ 10^{22} [year]

Aim for below IH region by making a breakthrough in future!!

What's breakthrough?

Since $\partial v \beta \beta$ is very rare signal, we need to achieve stringent conditions.

Low background level

Q-value of ⁴⁸Ca (4.27MeV) is highest among all the $0\nu\beta\beta$ candidates and therefore low background (BG) level is naturally possible. In addition, active veto by LS and additional shield can reduce more BGs.

Good energy resolution

For separating $0\nu\beta\beta$ and $2\nu\beta\beta$. Current energy resolution is $\sigma \sim 2\%$ @4.27MeV. Plan to develop "CaF2 Bolometer" ($\sigma \sim 0.3\%$) for future.

Large volume

Natural abundance of ⁴⁸Ca is 0.2%. Developing "⁴⁸Ca enrichment technique". Now we've achieved enrichment with factor of 6 by MCCCE^{*} method. ^{*} T. Kishimoto et al., Prog. Theor. Exp. Phys. 033D03 (2015)

Mainly focus on BG today!!

Experiment is located in Kamioka, Japan.

- <u>CaF₂ (pure) scintillator ($\tau \sim 1 \mu sec$)</u> 10 × 10 × 10 cm³ × 96 crystals (300 kg)
- $2m^3$ Liquid scintillator ($\tau \sim 10nsec$)

Active veto using different time constant!!

- <u>Cylindrical water tank (φ3m × h4m)</u>
- <u>62 Photomultipliers (PMT)</u>

13 inch PMT (R8055) ×48 20 inch PMT (R7250) ×14

Light collection system

Al sheet : Reflectance ~93% @ 420nm

Schematic view

()

The CANDLES (U.G) detector in Kamioka observatory

4π active veto by Liquid scintillator (LS)

- Rejection of external γ–ray background

- Pulse shape information by 500 MHz Flash ADC.
- Distinguish event type by offline pulse shape analysis taking advantage of different decay time.
- Detail of analysis method is explained later.

Background spectrum in CANDLES

- Even after LS cut, there exist background in high energy region above 4MeV.
- BG spectrum has peak around 7.5MeV.
- This BGs seem to be produced from neutron capture on surrounding material \rightarrow (n, γ).

Neutron source run

In order to confirm that our assumption is correct, ²⁵²Cf neutron source was set on the detector and data was taken in 2014.

- Spectra for neutron source run and physics run are consistent.
- MC simulation of (n,γ) can well reproduce the BG spectrum.

Shield for (n,γ) background reduction

CANDLES shield overview

CANDLES tank

Pb shield (7-12cm)

Reduce γ -ray from surrounding rock Effect of Pb (n, γ) is one order smaller than that of stainless tank

Boron sheet (4-5mm)

Reduce n captured by stainless tank

- (n, γ) BGs in CANDLES is expected to become $\frac{1}{80}$ by MC.
- Expected number of backgrounds after shield installation: Rock: 0.34±0.14 event/year Tank: 0.4±0.2 event/year

Pb shield construction

All the collaborators worked very hard!

 I used even professors like a horse ;)

Top Pb shield

Side Pb shield

Bottom Pb shield

B shield construction

> Neutron shield (B sheet) installation.

B4C 40wt% Silicone rubber (B sheet)

4-5mm thickness. Covered 100m² area

- For bottom B shield, liquid type was poured on top of the Pb.
- This is for both shielding neutron and waterproofing the bottom Pb blocks.
- B and Pb elution into water have been checked periodically after water filling.

PMT reinstallation

Fast time response. Twelve 10inch PMTs are installed for performance study.

Oinch PMT

13 inch RMT

- Radioactivity measurement with Ge detector indicated that "Al sleeve" and "O-ring" are dirty.
- We replaced them with new ones which are expected to be cleaner during shield construction.
- BG in 3 3.5 MeV is expected to decrease about less than half.

Top of the detector after the top Pb shield was closed.

Tank assembly

Construction finished in May 2016 !! Collaboration meeting @Toyama

Cabling

Neutron source run again!

- New ²⁵²Cf source data was taken in June 7th 14th in order to check performance of the shield with same setup.
- To compare with high statistics, loose LS cut was applied.
- (n,γ) with ²⁵²Cf was decreased by ~1/70!!
- This reduction is similar to we expected from MC.
- Since reduction for fast neutron is worse than for thermal neutron, reduction factor is not exactly same as expected.

Energy spectra of physics run after loose LS cut

Remaining backgrounds and reduction

- After shielding external BGs were reduced about two order.
- Remaining BGs is originating from internal radioactivity of Th chain (²⁰⁸Tl and ²¹²Bi-²¹²Po).
- 2νββ is not serious BG in current sensitivity. (it will be major BG after 48Ca enrichment)
- We reject remaining BGs by analysis.

Position reconstruction and crystal selection

 $\sum Npe(i)$

- Position of each event is reconstructed by weighted mean of observed charge in each PMT. $\sum Npe(i) \times \overline{PMT(i)}$
- Crystal separation is $\sim 7\sigma$ peak to peak.
- Crystal selection criteria is within 3σ from the peak.
- 27 clean crystals (Th contamination < 10 μ Bq/kg) out of 96 crystals are selected and the results are compared to all crystals.

Pulse shape discrimination

- Pulse shape α/β are different in CaF2 scintillator and LS has also very different shape.
- Make reference pulse for each event type (α / β / LS).
- Chi2 fitting each reference pulse to the data and identify which event type is most likely event by event.

- ²¹²Bi-²¹²Po sequential decay has enough short half-life (T_{1/2}=300ns) to be included in one event (4 μsec).
- It can be a BG in $Q_{\beta\beta}$ region since its total visible energy is 5.3 MeV at maximum.
- Pulse shape analysis can remove this background and effect to $0\nu\beta\beta$ search is negligibly small for now.

Find parent 212Bi α-decay candidate by pulse shape analysis.
 Apply 12min veto from 212Bi candidate in the same crystal.

²⁰⁸Tl multi-hit event cut

²⁰⁸Tl multi-hit event

- 1. ²¹²Bi nucleus undergo alpha decay.
- 2. After ~3min. ²⁰⁸Tl undergo β + γ decay.
- γ-ray go outside and detected in different crystal.
- 4. In this case, α and β are reconstructed in different crystal due to deposit energy.
- In order to remove multi-hit event as well as single hit, we tried to apply veto not only for the same crystal, but also for the neighboring crystals.
- Although this cut is powerful to remove ²⁰⁸Tl BG, signal efficiency become worse due to many accidental coincidence.
- Now we are under studying and improving cut method.

Energy spectrum at each reduction

Sensitivity for $0\nu\beta\beta$ in 1 year

Sensitivity is calculated from expected BGs.

Data set : 21.5 days after shielding $Q_{\beta\beta}$ region: 4170 - 4480 keV ($Q_{\beta\beta}$ -1 σ +2 σ)

	Without multi-hit cut		With multi-hit cut	
	27 crystals	All crystals	27 crystals	All crystals
# of ev @Q ββ	1	5	0	0
Expected ²⁰⁸ TI	0.22	2.2	0.14	1.4
Expected (n.γ)	0.01	0.04	0.01	0.04
Sig. eff.	0.46		0.30	
Sensitivity @1y	0.7 × 10 ²³ [y]	1.0 × 10 ²³ [y]	0.5 × 10 ²³ [y]	0.9 × 10 ²³ [y]

Sensitivity of CANDLES for $0\nu\beta\beta$ after 1 year is 0.5 - 1.0 × 10²³ [year]

<u>R&D for future</u>

✓ Scintillating bolometer for low BG
 ✓ ⁴⁸Ca enrichment for large target volume

Bolometer development

- Now ^{208}Tl is dominant BG and $2\nu\beta\beta$ is almost negligible in the current sensitivity.
- However, $2\nu\beta\beta$ will become main enemy for future after ⁴⁸Ca enrichment.
- Better energy resolution is necessary.
 Scintillator → Bolometer
- New BG appear in bolometer.

OvBB region

4.27 MeV

Heat

⁴⁸Ca Q_{ββ}: 4268 keV / ²³⁸U Q_α : 4270 keV Need particle ID \rightarrow Scintillating bolometer

The technique of scintillating bolometer was already established.

→ CRESST-II (CaWO4), Lucifer, AMoRE

Simultaneous measurement both heat and scintillation enables to identify the particle types (α/β particle ID).

Scintillation

014

<u>Bolometer development</u>

Dilution refrigerator

- We will use the dilution refrigerator which was developed for the dark matter search with LiF by the Univ. of Tokyo, and was customized to low BG measurement.
- Cooling power is $2\mu W @ 20mK$

<u>Target</u>

- 2cm cube of CaF2 crystal (25 g) in the initial stage.
- Temperature rise at Q-value is 1.43 × 10-1 K at 10 mK.
- Neutron Transmutation Doped Germanium(NTD-Ge) thermistors borrowed from the Univ. of Tokyo.

<u>Schedule</u>

Please see Tetsuno's poster

<u>2016</u>	 Achieve low temperature (~a few K) <i>Done!!</i> Achieve ultra low temperature (~10mK) Detect heat signal
<u>2017</u>	 Add a light detector to bolometer and achieve the simultaneous detection of heat and light signals Increase crystal size and number

⁴⁸Ca enrichment

- Natural abundance of ⁴⁸Ca is 0.187%.
- Commercial ⁴⁸Ca → too expensive (M\$/10g but kg-ton)
- Developing enrich technique of ⁴⁸Ca is crucial for large volume DBD search.
- Challenges in CANDLES:
 - Crown ether resin + chromatography (Osaka, TIT...)
 - 1.3 times and cost down

Journal of Chromatography A Volume 1415, 9 October 2015, Pages 67

- Crown ether + micro reactor (Osaka sangyo)
- Laser separation (Fukui)
 - Good separation but smaller productivity
- Multi-channel counter current electrophoresis (Osaka)

Multi-channel counter current electrophoresis

- Separation using difference of migration speed between ⁴⁰Ca / ⁴⁸Ca.
- Principle was demonstrated.
- Further study on parameter optimization for,,,
 High enrichment Large amount

BN plate 10 mm thick 0.8mmΦ, every 4 mm $R(MCCCE) = \frac{43Ca/48Ca(MCCCE)}{43Ca/48Ca(natural)}$

Enrichment (43/40): 3.08 (48/40): 6

PTEP

Prog. Theor. Exp. Phys. **2015**, 033D03 (10 pages) DOI: 10.1093/ptep/ptv020

Calcium isotope enrichment by means of multi-channel counter-current electrophoresis for the study of particle and nuclear physics

T. Kishimoto^{1,2,*}, K. Matsuoka², T. Fukumoto³, and S. Umehara²

<u>Summary</u>

- CANDLES is a project to search for double beta decay of ⁴⁸Ca using 300kg CaF2 scintillator, running in Kamioka underground lab..
- Using ⁴⁸Ca has a great chance to achieve **"Background** Free Measurement", one of the key to perform sensitive 0vββ search.
- Additional shield consisting of Pb/B was installed in 2015-2016 and data taking restarted from this May.
- The (n,γ) background was reduced by almost two order of magnitude.
- Sensitivity of $0\nu\beta\beta$ is 0.5–1.0×10²³ [year]
- We are now trying to improve analysis method for achieving better sensitivity.
- Future R&D is also ongoing.

New collaborative institute and Postdoc are now wanted!!

Backup slide

Double beta decay Constraint of v mass from 0νββ oscillation experiments **KKDC** Claim (meV) ad ma 10⁻² Inverted hierarchy Beyond the SM Standard model Proof of Majorana Already observed in neutrino some nuclei • $T_{1/2}$: > 10²⁵ yr Normal hierarchy T_{1/2}: $10^{18} \sim 10^{20}$ yr 10^{-3} $\frac{1}{T_{1/2}} = G_{0\nu} |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$ $0\nu\beta\beta$ half-life: 10-4 10⁻³ **10**⁻¹ 10⁻² 10-4 Olf Majorana neutrino... Lightest neutrino m_v (meV)

Light neutrino mass (See-Saw mechanism) Matter dominated universe (Leptogenesis)

2014

2015

2016

Recent detector ungrade

Magnetic cancellation coil installation Detector cooling system installation For better energy resolution!!

DBD14 @Hawaii Data taking

Gamma and neutron shield construction For lowering background level!

Preparation for next run Data taking DBD16 @Osaka

Magnetic cancellation coil

- Winded coil surrounding the water tank and apply ~1.5A current to cancel geomagnetic field.
- Better p.e. collection efficiency of PMT dynode is expected.

- Light yield increased (later)
 Position distortion improved
- **3. 1pe distribution improved**

Reconstructed position

1pe distribution (13" PMT)

Cooling system

- Cooling system was installed and tested in middle of 2014.
- Data was taken with low temperature in the end of 2014.

✓ Room temp. → 2°C, Water temp. → 4.3°C
 ✓ Test data was successfully collected with very good stability (±0.1°C) during ~1 month.

Light yield increase

• Light yield has been increased by the detector upgrades.

	Relative light yield	Resolution
Before	1	σ = 4.8%
Coil	1.23	σ = 4.2%
Cool	1.58	σ = 3.6%

Obtained from ⁸⁸Y source calibration

After improvements, <u>~1000 [p.e./MeV]</u> is achieved