Status of the DCBA experiment

9 November, 2016

1 The

Hidekazu Kakuno Tokyo Metropolitan University

International Workshop on "Double Beta Decay and Underground Science", DBD16 Osaka University, JAPAN

$\beta\beta$ experiments in the world

Scintillation/Calorimetry

ionization COBRA (¹³⁰Te, ¹¹⁶Cd, etc.) Majorana⁽⁷⁶Ge) GERDA(⁷⁶Ge)

scintillation CANDLES(⁴⁸Ca) MOON(¹⁰⁰Mo) KamLAND-Zen(¹³⁶Xe) SNO+(¹⁵⁰Nd)

bolometry CUORE(¹³⁰Te)

Ionization +scintillation EXO(¹³⁶Xe) NEXT(¹³⁶Xe)

DCBA (¹⁰⁰Mo,

¹⁵⁰Nd, etc.)

Tracking

Combination

(momentum reco.) NEMO3 (¹⁰⁰Mo, ⁸²Se, ¹⁵⁰Nd, etc.) Super NEMO (⁸²Se, ¹⁵⁰Nd, etc.)

Characteristics of Tracking method

Advantages:

- Insensitive to neutral background (e.g. γ -ray)
- More information than other methods:
 - Full 4-momentum and charges of two β -rays
 - Decay vertex position
- Good background rejection:
- More information (E-spectrum of single β, angular correlation) to constrain New Physics beyond the SM (if 0vββ observed)

Disadvantage:

DCBA: method

- have source plate(s) inside of the tracking volume
 Source plate: ¹⁰⁰Mo (¹⁵⁰Nd in future)
- emitted two electrons make helical trajectories inside of the tracking volume
- reconstruct momenta of two electrons

DCBA: track reconstruction method

Reconstruct position: X: drift time Y: hit position of the anode wire Z: hit position of the pickup wire

Full kinemtics of two β -rays are available:

- 1. electric charges of two β -rays
- 2. momenta of two β -rays
- 3. angle b/w the two β -rays
- 4. sum of kinetic energy of two

β-rays

Full kinemtics of two β -rays are available:

- 1. electric charges of two β -rays
- 2. momenta of two β -rays
- 3. angle b/w the two β -rays
- 4. sum of kinetic energy of two

β-rays

Full kinemtics of two β -rays are available:

- 1. electric charges of two β -rays
- 2. momenta of two β -rays
- 3. angle b/w the two β -rays
- 4. sum of kinetic energy of two

β-rays

Full kinemtics of two β -rays are available:

- 1. electric charges of two β -rays
- 2. momenta of two β -rays
- 3. angle b/w the two β -rays
- sum of kinetic energy of two β-rays
- 5. position of the decay vertex

Full kinemtics of two β -rays are available:

- 1. electric charges of two β -rays
- 2. momenta of two β -rays
- 3. angle b/w the two β -rays
- 4. sum of kinetic energy of two

β**-rays**

Full kinemtics of two β -rays are available:

- 1. electric charges of two β -rays
- 2. momenta of two β -rays
- 3. angle b/w the two β -rays
- 4. sum of kinetic energy of two

β**-rays**

DCBA experiment

DCBA experiment is performed at Fuji-experimental hall @ KEK

Fuji experimental hall is constructed for e⁺e⁻ collider experiment, and is *NOT* underground facility

History and Future Plan

2005 DCBA

2007 DCBA-T2

-R&D of the experimental Method - Measurement of 2vββ

2011 DCBA-T2.5

now- Prototyping towards MTD2017 DCTA-T3-Precise measurement of 2νββ

20XX MTD (tentative name)

-Search for $0\nu\beta\beta$

DCBA-T2 Chamber installed into the DCBA-T3 SC-Magnet

DCBA-T2.5

2005 DCBA

2007 DCBA-T2

-R&D of the experimental Method - Measurement of 2vββ

2011 DCBA-T2.5

- Prototyping towards MTD 2017 DCTA-T3 -Precise measurement of 2vββ

20XX MTD (tentative name)

-Search for $0\nu\beta\beta$

DCBA-T2 Chamber installed into the DCBA-T3 SC-Magnet

DCBA-T2.5

DCBA-T2 chamber is installed in the DCBA-T3 magnet

DCBA T2 Chamber

Natural Mo source plate: •280mm x 130mm x 50µm •45mg/cm² •total 30g

• ¹⁰⁰Mo: 9.6% in the plate (0.03 mol)

DCBA-T3 Magnet: • Super-Conducting solenoid 24 hour operation • B~0.6-0.8kGauss for T2.5

DCBA-T2.5: Distributions of signal candidate

40

20

-0.8

-0.6

-0.4

-0.2

8 10 ZWR - ZWL

VP YW

35

30

25

20

15

4 YWR - YWL

count

cos th

0.8

0.2

0.4

0.6

DCBA-T2.5: Distributions of signal candidate

Duration: 8.38 x 10⁶ sec Reconstruction efficiency: 9.3% Amount of ¹⁰⁰Mo: 0.03mol

> NEMO3 (Nucl. Phys. A 765(2006), 483-494) $T_{\frac{1}{2}} = [7.41\pm0.02(stat.)\pm0.43(syst.)]x10^{18} yrs$

Expected number of signals: 52 events

DCBA-T2.5: Improvement of Simulation & Analysis

Development is in progress

DCBA-T3

2005 DCBA

2007 DCBA-T2

-R&D of the experimental Method - Measurement of 2vββ

2011 DCBA-T2.5

- Prototyping towards MTD 2017 DCTA-T3 -Precise measurement of 2vββ

20XX MTD (tentative name)

-Search for $0\nu\beta\beta$

DCBA-T2 Chamber installed into the DCBA-T3 SC-Magnet

Status of DCBA-T3

Test of the drift chamber using cosmic ray muon \rightarrow To be started soon

Next generation experiment: MTD

2005 DCBA

2007 DCBA-T2

-R&D of the experimental Method - Measurement of 2vββ

2011 DCBA-T2.5

experimental thod

- Prototyping towards MTD 2017 DCTA-T3 -Precise measurement of 2vββ

20XX MTD (tentative name)

-Search for $0\nu\beta\beta$

DCBA-T2 Chamber installed into the DCBA-T3 SC-Magnet

R&D towards MTD

Summary

DCBA experiment is a unique double beta decay experiment:

- reconstruct momenta of two β -rays and the decay vertex
 - \rightarrow full information of the decay is available

DCBA-T2.5 experiment

- ¹⁰⁰Mo (0.03mol) as source, non-stop operation using SC magnet
- Finished operation at July 2016 for DCBA-T3 upgrade
- Around 10% of data is analyzed
 - \rightarrow signal candidate is about 10 times as much as expected
 - \rightarrow understanding signal and background is in progress

DCBA-T3 experiment

- Assembling of drift chamber system is in progress
 - \rightarrow cosmic ray test will be started soon

R&D toward MTD

- R&D of large area drift chamber is in progress

backup

Energy resolution of DCBA-T2 (& T2.5)

Energy resolution: ~0.15 MeV (FWHM)

Estimation of energy resolution by MC

DCBA-T2.5: A 2vββ Signal Candidate

Vertex point E1 E2 Y 206.5mm 205.5mm Z 210.7mm 213.3mm

Another $2\nu\beta\beta$ signal candidate

Characteristics of the signal candidate

 1.trajectory of the two tracks looks like inverse "S" shape
 2. vertex points of two tracks are consistent

Yet another signal candidate

Characteristics of the signal candidate

 1.trajectory of the two tracks looks like inverse "S" shape
 2. vertex points of two tracks are consistent

Vertex point E1 E2 Y 127.4mm 131.8mm Z 91.3mm 97.6mm

A typical background event

Background event of Double Compton scattering

- 1. Energy is too large
- $(^{100}Mo \rightarrow ^{100}Ru: Q-value=3.0MeV)$
- 2. Vertex point is inconsistent between two tracks

DCBA-T3

2005 DCBA

2007 DCBA-T2

2011 DCBA-T2.5

2017 MTD (tentative name)

- charge dividing
- 6 mm pitch wires (xy + xz)
- ¹⁰⁰Mo source (natural Mo 30g)
- 0.6 0.8 kG magnetic field
 Normal conducting magnet: 9h/day operation (Mon.-Fri)
- 6 mm pitch wires (xy + xz)
- ¹⁰⁰Mo source (natural Mo 30g)
 0.8 kG magnetic field
- super-conducting magnet:24h nonstop operation
- 3 mm pitch wires (xy + xz)*8
- ¹⁵⁰Nd (5.6% in natural Nd₂O₃)
- B=3 kG at the maximum
- ⁸²Se ¹⁵⁰Nd(enriched) several 10 kg

DCBA-T2 Chamber installed into the DCBA-T3 SC-Magnet

Next generation experiment: MTD

2005 DCBA

2007 DCBA-T2

- charge dividing
- 6 mm pitch wires (xy + xz)
- ¹⁰⁰Mo source (natural Mo 30g)
- 0.6 0.8 kG magnetic field
 Normal conducting magnet: 9h/day operation (Mon.-Fri)
- 6 mm pitch wires (xy + xz)
- ¹⁰⁰Mo source (natural Mo 30g)
 - 0.8 kG magnetic field super-conducting magnet:24h nonstop operation
 - 3 mm pitch wires (xy + xz)*8
 - ¹⁵⁰Nd (5.6% in natural Nd₂O₃)
 - B=3 kG at the maximum
 - ⁸²Se ¹⁵⁰Nd(enriched) several 10 kg

DCBA-T2 Chamber installed into the DCBA-T3 SC-Magnet

2011 DCBA-T2.5

2017 MTD (tentative name)

MTD: R&D status

Drawing of MTD drift chambers and Gas Container

Design study of the mechanical structure has been started

MTD: R&D status (cont'd)

