Status of the DCBA experiment

9 November, 2016

Hidekazu Kakuno
Tokyo Metropolitan University

International Workshop on “Double Beta Decay and Underground Science”, DBD16
Osaka University, JAPAN
ββ experiments in the world

Scintillation/Calorimetry

ionization
COBRA (130Te, 116Cd, etc.)
Majorana(76Ge)
GERDA(76Ge)

scintillation
CANDLES(48Ca)
MOON(100Mo)
KamLAND-Zen(136Xe)
SNO+(150Nd)

bolometry
CUORE(130Te)

Ionization +scintillation
EXO(136Xe)
NEXT(136Xe)

Combination

NEMO3 (100Mo, 82Se, 150Nd, etc.)
Super NEMO (82Se, 150Nd, etc.)

Tracking (momentum reco.)

DCBA (100Mo, 150Nd, etc.)
Characteristics of Tracking method

Advantages:
- Insensitive to neutral background (e.g. γ-ray)
- More information than other methods:
 - Full 4-momentum and charges of two β-rays
 - Decay vertex position
- Good background rejection:
- More information (E-spectrum of single β, angular correlation) to constrain New Physics beyond the SM (if 0νββ observed)

Disadvantage:
For better resolution:
Need to have **less material** inside of the tracking volume

For better statistics:
Need to have **more source** inside of the tracking volume

hard to increase source weight
DCBA: method

- have source plate(s) inside of the tracking volume
 Source plate: 100Mo (150Nd in future)
- emitted two electrons make helical trajectories inside of the tracking volume
- reconstruct momenta of two electrons

Source plate is put parallel to the B-field
→ electrons having large angle to the source plate, travel across the B-field
DCBA: track reconstruction method

Reconstruct position:
X: drift time
Y: hit position of the anode wire
Z: hit position of the pickup wire

Reconstruct momentum:

\[T = \sqrt{p_t^2 + p_z^2 + m_e^2} - m_e \]
\[= \sqrt{(0.3B\rho)^2(1 + \tan^2\lambda) + m_e^2} - m_e \]
\[= \sqrt{(0.3B\rho)^2/cos^2\lambda + m_e^2} - m_e \]

Gas: He(90%) + CO₂(10%)
Full kinematics of two β-rays are available:

1. electric charges of two β-rays
2. momenta of two β-rays
3. angle b/w the two β-rays
4. sum of kinetic energy of two β-rays
5. position of the decay vertex
Full kinematics of two β-rays are available:

1. electric charges of two β-rays
2. momenta of two β-rays
3. angle b/w the two β-rays
4. sum of kinetic energy of two β-rays
5. position of the decay vertex

$E(\beta_1) = 0.354\text{MeV}$

$E(\beta_2) = 0.531\text{MeV}$

$E(\beta_1) + E(\beta_2) = 0.885\text{MeV}$
Information of an event

Full kinematics of two β-rays are available:

1. electric charges of two β-rays
2. momenta of two β-rays
3. angle b/w the two β-rays
4. sum of kinetic energy of two β-rays
5. position of the decay vertex

$E(\beta_1) = 0.354\,\text{MeV}$

$E(\beta_1) + E(\beta_2) = 0.885\,\text{MeV}$

$E(\beta_1) = 0.531\,\text{MeV}$

$\cos \theta = -0.661$

Vertex point

β_1 and β_2

$Y 183.0\,\text{mm} 183.9\,\text{mm}$

$Z 151.7\,\text{mm} 146.3\,\text{mm}$
Information of an event

Full kinematics of two β–rays are available:

1. electric charges of two β-rays
2. momenta of two β-rays
3. angle b/w the two β-rays
4. sum of kinetic energy of two β-rays
5. position of the decay vertex

$E(\beta_1)=0.354\text{MeV}$
$E(\beta_2)=0.531\text{MeV}$
$E(\beta_1)+E(\beta_2)=0.885\text{MeV}$

$\cos\theta=-0.661$
Information of an event

Full kinematics of two β-rays are available:

1. electric charges of two β-rays
2. momenta of two β-rays
3. angle b/w the two β-rays
4. sum of kinetic energy of two β-rays
5. position of the decay vertex

$E(\beta_1) = 0.354\text{MeV}$

$E(\beta_1) + E(\beta_2) = 0.885\text{MeV}$

$\cos \theta = -0.661$

Vertex point

$Y = 183.0\text{mm}$ 183.9mm

$Z = 151.7\text{mm}$ 146.3mm
Information of an event

Full kinematics of two β-rays are available:

1. electric charges of two β-rays
2. momenta of two β-rays
3. angle b/w the two β-rays
4. sum of kinetic energy of two β-rays
5. position of the decay vertex

$E(\beta_1) = 0.531$ MeV
$E(\beta_2) = 0.354$ MeV

$E(\beta_1) + E(\beta_2) = 0.885$ MeV
DCBA experiment

DCBA experiment is performed at Fuji-experimental hall @ KEK

Fuji experimental hall is constructed for e^+e^- collider experiment, and is **NOT** underground facility
History and Future Plan

2005 DCBA

2007 DCBA-T2 - R&D of the experimental Method
- Measurement of $2\nu\beta\beta$

2011 DCBA-T2.5 - Prototyping towards MTD
- Precise measurement of $2\nu\beta\beta$

now - Search for $0\nu\beta\beta$

2017 DCTA-T3

20XX MTD (tentative name) DCBA-T2 Chamber installed into the DCBA-T3 SC-Magnet
DCBA-T2.5

2005 DCBA

2007 DCBA-T2
- R&D of the experimental Method
- Measurement of $2\nu\beta\beta$

2011 DCBA-T2.5
- Prototyping towards MTD
- Precise measurement of $2\nu\beta\beta$

2017 DCTA-T3
- Precise measurement of $2\nu\beta\beta$

20XX MTD (tentative name)
- Search for $0\nu\beta\beta$

DCBA-T2 Chamber installed into the DCBA-T3 SC-Magnet
DCBA-T2.5

DCBA-T2 chamber is installed in the DCBA-T3 magnet

DCBA T2 Chamber

Natural Mo source plate:
- 280mm x 130mm
- 50μm
- 45mg/cm²
- total 30g
- 100Mo: 9.6% in the plate (0.03 mol)

DCBA-T3 Magnet:
- Super-Conducting solenoid
- 24 hour operation
- B~0.6-0.8kGauss for T2.5
DCBA-T2.5: Data Taking

July 2011: Started data taking
July 2016: Finished data taking

Number of events / day: \(\sim 1 \times 10^4 \)
(\(\gg 99\% \) of events are cosmic-ray background)
Total number of recorded events: \(\sim 8 \times 10^6 \)
Total number of analyzed events: \(\sim 1 \times 10^6 \)
← eye-scan based event selection
DCBA-T2.5: Distributions of signal candidate

Sum of Kinetic energy

- Count vs. MeV

Kinetic energy of Single electron

- Count vs. MeV

Cosine of opening angle b/w electrons

- Count vs. cos th

Vertex position difference b/w electrons

- Count vs. Y and Z

Q-value of ^{100}\text{Mo}

- Preliminary

Y (anode)

- Preliminary

Z (pickup)

- Preliminary

Entries

- 579

Mean

- 1.051

RMS

- 0.55

Entries

- 1158

Mean

- 0.5254

RMS

- 0.3793

Entries

- 579

Mean

- -0.5502

RMS

- 0.3621
DCBA-T2.5:
Distributions of signal candidate

- **Sum of Kinetic energy**
 - Entries: 579
 - Mean: 1.051
 - RMS: 0.55
 - Q-value of 100Mo

- **Duration:** 8.38×10^6 sec
- **Reconstruction efficiency:** 9.3%
- **Amount of 100Mo:** 0.03 mol

- **Expected number of signals:** 52 events

- $T_{1/2} = [7.41 \pm 0.02 \text{(stat.)} \pm 0.43 \text{(syst.)}] \times 10^{18}$ yrs

Signal candidate: 579 events

← contain many background events:

- Double Compton scattering
- Möller scattering
DCBA-T2.5: Improvement of Simulation & Analysis

Geant4 MC simulation

Automated track finding & fitting

Electron 1
$E_1 = 1.239\,[\text{MeV}]$

Electron 2
$E_2 = 1.261\,[\text{MeV}]$

2 Electrons Sum Energy
$E_1 + E_2 = 2.500\,[\text{MeV}]$

(Left Chamber) Electron 1
$E_1 = 1.213\,[\text{MeV}]$

(Left Chamber) Electron 2
$E_2 = 1.177\,[\text{MeV}]$

(Left Chamber) 2 Electrons Sum Energy
$E_1 + E_2 = 2.390\,[\text{MeV}]$

Development is in progress
DCBA-T3

2005 DCBA

2007 DCBA-T2
- R&D of the experimental Method
- Measurement of $2\nu\beta\beta$

2011 DCBA-T2.5
- Prototyping towards MTD
- Precise measurement of $2\nu\beta\beta$

2017 DCTA-T3
- Precise measurement of $2\nu\beta\beta$

20XX MTD
(tentative name)
- Search for $0\nu\beta\beta$

DCBA-T2 Chamber installed into the DCBA-T3 SC-Magnet
Status of DCBA-T3

DCBA-T3 aim to improve energy resolution by fine pitch drift chambers and high B-field

<table>
<thead>
<tr>
<th></th>
<th>T2</th>
<th>T3</th>
</tr>
</thead>
<tbody>
<tr>
<td># of wires</td>
<td>40</td>
<td>160</td>
</tr>
<tr>
<td>Wire pitch</td>
<td>6mm</td>
<td>3mm</td>
</tr>
<tr>
<td>B-Field</td>
<td>0.8kG</td>
<td>3kG</td>
</tr>
</tbody>
</table>

- **Drift Chamber**: To be tested
- **Readout Electronics (Preamp+TDC+FADC)**
- **Gas Container**
- **SC-Magnet**: Is ready (already in use for DCBA-T2.5)

Test of the drift chamber using cosmic ray muon → To be started soon
Next generation experiment: MTD

- 2005 DCBA
- 2007 DCBA-T2
 - R&D of the experimental Method
 - Measurement of $2\nu\beta\beta$
- 2011 DCBA-T2.5
 - Prototyping towards MTD
 - Precise measurement of $2\nu\beta\beta$
- 2017 DCTA-T3
 - Search for $0\nu\beta\beta$
- 20XX MTD (tentative name)
R&D towards MTD

Magnetic Tracking Detector (tentative name):
- Search for $0\nu\beta\beta$ using ^{150}Nd

Sensitivity for Neutrino mass @ 1 year operation:

<table>
<thead>
<tr>
<th>Thickness of a source plate</th>
<th>Natural Nd (^{150}Nd 5.6%)</th>
<th>Condensed Nd (^{150}Nd 60%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15mg/cm2</td>
<td>0.8eV</td>
<td>0.2eV</td>
</tr>
<tr>
<td>40mg/cm2</td>
<td>0.5eV</td>
<td>0.1eV</td>
</tr>
</tbody>
</table>

Chamber cell: the same as DCBA-T3, Source plate: 80 m2/module
Thickess: 40 mg/cm2, Source重量: 32 kg/module, 27 source plates

Expected Energy Resolution

$$\text{FWHM}(E_{\text{sym}}) = \sqrt{2 \times 80\text{keV}}$$

$$\frac{Q_{\text{Nd-150}}(3370\text{keV})}{3.4\%}$$
Summary

DCBA experiment is a unique double beta decay experiment:
- reconstruct momenta of two β-rays and the decay vertex
 → full information of the decay is available

DCBA-T2.5 experiment
- 100Mo (0.03mol) as source, non-stop operation using SC magnet
- Finished operation at July 2016 for DCBA-T3 upgrade
- Around 10% of data is analyzed
 → signal candidate is about 10 times as much as expected
 → understanding signal and background is in progress

DCBA-T3 experiment
- Assembling of drift chamber system is in progress
 → cosmic ray test will be started soon

R&D toward MTD
- R&D of large area drift chamber is in progress
backup
Energy resolution of DCBA-T2 (& T2.5)

Electron energy:
- 0.48 MeV (1.5%)
- 0.56 MeV (0.6%)
- 0.98 MeV (7.0%)
- 1.05 MeV (2.4%)

Energy resolution: ~0.15 MeV (FWHM)

Energy spectra of internal conversion electrons from 207Bi

Including Backgrounds

FWHM ≈ 0.15 MeV

Chamber conditions
He (90%) + CO$_2$ (10%) 1 atm
B = 0.8 kG
Wire pitch = 6 mm
Estimation of energy resolution by MC

$\sigma/E = 6.83 \pm 0.02\% \quad [0.8kG]$
$\sigma/E = 8.72 \pm 0.02\% \quad [0.6kG]$
DCBA-T2.5: A $2
\nu\beta\beta$ Signal Candidate

Current analysis method:
Eye scan based analysis using graphical tools
Understand the event topology

E1=0.398MeV
E2=0.575MeV
E3=0.441MeV

$\cos\theta=0.233$

Vertex point

E1
E2

Y 206.5mm 205.5mm
Z 210.7mm 213.3mm
Another $2\nu\beta\beta$ signal candidate

Characteristics of the signal candidate:

1. Trajectory of the two tracks looks like inverse “S” shape
2. Vertex points of two tracks are consistent

Vertex point:

E1 = 0.531 MeV
E2 = 0.354 MeV
$\cos\theta = -0.661$

Y: 183.0 mm 183.9 mm
Z: 151.7 mm 146.3 mm
Yet another signal candidate

Characteristics of the signal candidate

1. trajectory of the two tracks looks like inverse “S” shape
2. vertex points of two tracks are consistent

- Trajectory of two tracks:
 - E1 = 1.221 MeV
 - E2 = 0.115 MeV
 - \(\cos \theta = -0.823 \)

- Vertex points:
 - Y: 127.4 mm, 131.8 mm
 - Z: 91.3 mm, 97.6 mm
A typical background event

1. Energy is too large

 \[
 (^{100}\text{Mo}\rightarrow^{100}\text{Ru}: \text{Q-value}=3.0\text{MeV})
 \]

2. Vertex point is inconsistent between two tracks

<table>
<thead>
<tr>
<th>E1</th>
<th>E2</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.739 MeV</td>
<td>3.40 MeV</td>
<td>205.9mm</td>
<td>77.4mm</td>
</tr>
<tr>
<td>111015-120_69</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Background event of Double Compton scattering
DCBA-T3

2005 DCBA
- Charge dividing
- 6 mm pitch wires (xy + xz)

2007 DCBA-T2
- 100Mo source (natural Mo 30g)
- 0.6 - 0.8 kG magnetic field
- Normal conducting magnet: 9h/day operation (Mon.-Fri)

2011 DCBA-T2.5
- 6 mm pitch wires (xy + xz)
- 100Mo source (natural Mo 30g)
- 0.8 kG magnetic field
- Super-conducting magnet: 24h nonstop operation

2014 DCTA-T3
- 3 mm pitch wires (xy + xz)*8
- 150Nd (5.6% in natural Nd$_2$O$_3$)
- B=3 kG at the maximum

2017 MTD (tentative name)
- 82Se 150Nd (enriched)
- Several 10 kg

now

DCBA-T2 Chamber installed into the DCBA-T3 SC-Magnet
Next generation experiment: MTD

<table>
<thead>
<tr>
<th>Year</th>
<th>Experiment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>DCBA</td>
<td>6 mm pitch wires (xy + xz)</td>
</tr>
<tr>
<td>2007</td>
<td>DCBA-T2</td>
<td>100(^{100})Mo source (natural Mo 30g)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.6 - 0.8 kG magnetic field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Normal conducting magnet: 9h/day operation (Mon.-Fri)</td>
</tr>
<tr>
<td>2011</td>
<td>DCBA-T2.5</td>
<td>6 mm pitch wires (xy + xz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100(^{100})Mo source (natural Mo 30g)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8 kG magnetic field</td>
</tr>
<tr>
<td></td>
<td></td>
<td>super-conducting magnet: 24h nonstop operation</td>
</tr>
<tr>
<td>2014</td>
<td>DCTA-T3</td>
<td>3 mm pitch wires (xy + xz)*8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>150(^{150})Nd (5.6% in natural Nd(_2)O(_3))</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B=3 kG at the maximum</td>
</tr>
<tr>
<td>2017</td>
<td>MTD</td>
<td>82(^{82})Se 150(^{150})Nd(enriched) several 10 kg</td>
</tr>
</tbody>
</table>

Note: DCBA-T2 Chamber installed into the DCBA-T3 SC-Magnet
Design study of the mechanical structure has been started
MTD: R&D status (cont'd)

- Drawing of MTD chambers
- Production of a chamber frame mock-up
- Calculation of sag of the horizontal frame
- Measurement of sag
- Support fin of the Horizontal frame
- Digital height gauge

Design of MTD chamber w/ mock-up is ongoing