

Search for double electron capture in XMASS

Katsuki Hiraide, the university of Tokyo for the XMASS Collaboration November 9th, 2016 DBD16@Osaka, Japan

Outline

- Introduction
 - Double electron capture on ¹²⁴Xe
 - Why is ¹²⁴Xe interesting?
- Search for 2ν double electron capture on 124 Xe in XMASS
 - Results from commissioning data [Phys. Lett. B 759 (2016) 64]
- Future prospects
- Summary

Introduction

Double beta decay ($\beta^{-}\beta^{-}$) (Z,A) \rightarrow (Z+2,A) + 2e⁻ + (2 \overline{v}_{e})

- Two β^- decays occur simultaneously.
- 2v modes have been observed in 11 nuclei with half-life of 10¹⁸-10²⁴ years. (⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd, ²³⁸U)

Double electron capture (ECEC) $(Z,A) + 2e^{-} \rightarrow (Z-2,A) + (2v_e)$ (Z-1,A) (Z,A) (Z,A)

- Two orbital electrons are captured simultaneously.
- There are only two positive results on 2ν modes ⁷⁸Kr : $T_{1/2} = (9.2^{+5.5}_{-2.6}(stat) \pm 1.3(sys)) \times 10^{21}$ years ¹³⁰Ba : $T_{1/2} = (2.2 \pm 0.5) \times 10^{21}$ years

In both cases, if 0v modes are observed,

they would be evidence of lepton number violation and Majorana neutrino.

2v double electron capture on ^{124}Xe

- Natural xenon contains ¹²⁴Xe (N.A.=0.095%) which can undergo 2vECEC.
 ¹²⁴Xe (g.s., 0⁺) + 2e⁻ → ¹²⁴Te (g.s., 0⁺) + 2v_e + 2864keV
- In the case of 2 K-shell electrons are captured,
 - Only X-rays and Auger electrons are observable
 - Total energy deposit is $2 \times E_B = 63.6 \text{ keV}$
- Expected half-life is 10²⁰-10²⁴ years.
- ¹²⁶Xe (N.A.=0.089%) can also undergo 2vECEC, but it is much slower due to smaller Q-value (896keV).

Why is ¹²⁴Xe interesting?

- ¹²⁴Xe has the largest Q-value among all the 35 ECEC candidates. It is large enough so that β^+ EC and $\beta^+\beta^+$ channels are also allowed.
 - β⁺EC: (Z,A) + e⁻ → (Z-2,A) + e⁺ (+2ν_e)
 - $\beta^+\beta^+$: (Z,A) \rightarrow (Z-2,A) + 2e⁺ (+2v_e)
- The $0\nu\beta^+EC$ mode has an enhanced sensitivity to right-handed weak current.
 - It can help to disentangle the contributions of different mechanisms if observed.
- The 0vECEC process may be resonantly enhanced if there exists an excited state with $\Delta = Q_{ECEC} - 2E_x - E_{\gamma} \sim 0$.
- And... any measurement of 2vECEC will provide a new reference for the calculation of nuclear matrix elements.

The XMASS experiment

A multi-purpose experiment using liquid xenon in the Kamioka mine (2,700 m.w.e.) in Japan.

- Direct detection of dark matter
- Observation of pp/⁷Be solar neutrinos
- Search for neutrinoless double beta decay

XMASS-2 (total ~24tons)

The XMASS-I detector

- Single-phase liquid xenon detector
 - ~830 kg of liquid xenon (-100 °C)
 - 642 2-inch PMTs
 (Photocathode coverage >62%)
 - ~14 photoelectrons/keV
- Water Cherenkov detector
 - 10m diameter, 11m high
 - 72 20-inch PMTs
 - Active shield for cosmic-ray muons
 - Passive shield for n/γ

History of XMASS-I

Dark matter results will be presented by K. Sato in the dark matter session on Nov. 10th.

Expected ¹²⁴Xe 2v 2K-capture signal

- X-rays and Auger electrons after 2v 2K-capture are simulated.
- The energy window (56-72keV) is determined so that it contains 90% of the simulated signal.
- Efficiency for signal is 59.7%.

Observed data

- Data taken between Dec. 2010 and May 2012 (132.0 live days)
- Fiducial mass is 41kg (It contains 39g of ¹²⁴Xe)
- 5 events remained in the signal region

Comparison with background prediction

+ Data

- -- Pb-214 background MC (w/ sys. error)
- Main background is
 ²¹⁴Pb (daughter of ²²²Rn) in the detector.
- The amount of ²²²Rn was estimated from the observed rate of ²¹⁴Bi-²¹⁴Po decay.
- Expected number of ²¹⁴Pb BG events in the signal region: 5.3+/-0.5 events
- No significant excess above background.

Limits on 2v 2K-capture half-lives

- We derived the 90% CL lower limit on ¹²⁴Xe 2vECEC half-life using the Bayesian approach.
- Since we do not see signal, we set limit on ¹²⁶Xe 2vECEC half-life as well.

$$T_{1/2}^{2\nu 2K} (124 \text{Xe}) > 4.7 \times 10^{21} \text{ yrs}$$

$$T_{1/2}^{2\nu 2K} (126 \text{Xe}) > 4.3 \times 10^{21} \text{ yrs}$$
 (90%CL)

The world best limits to date !! Published in Phys. Lett. B759 (2016) 64.

Comparison of background rate in fiducial volume including both nuclear recoil and e/γ events

- XMASS achieved low background rate of O(10⁻⁴) event/day/kg/keV in a few 10s keV including e/γ events
- Low background rate for e/γ events is good for searching for dark matter other than WIMPs.

Original figure taken from D. C. Mailing, Ph.D (2014) Fig 1.5

Future prospects (1)

- Reduction of β -ray background by PSD
 - 2vECEC: 2 X-ray/Auger electrons with ~30 keV each
 - \succ β -ray BG: single electron
- Measured LXe scintillation time profile using gamma-ray sources (⁵⁵Fe, ²⁴¹Am, ⁵⁷Co). Takiya et al. (XMASS Collaboration), NIM A834 (2016) 192.
- In the case of gamma-rays with Eγ<~200 keV, they are converted into multiple electrons.
 e.g.) 122 keV gamma-ray from ⁵⁷Co
 - → ~90 keV photo-electric electron +
 ~30 keV Auger electron + ...
- If we compare β/γ with the same energy,
 γ events have a few ns shorter decay time.

Future prospects (2)

 We constructed a particle ID parameter from the observed photoelectron timing distribution in each event.

$$\beta CL = P \times \sum_{i=0}^{n-1} \frac{(-\ln P)^i}{i!} \quad P = \prod_{i=1}^n CL_i$$

where CLi is the confidence level of each PE's timing assuming beta-ray.

- If events with βCL<0.05 are selected as gamma-like,
 - Acceptance for gamma-ray ~35%.
 - Acceptance for beta-ray is ~7%.
 - \rightarrow S/N will improve by a factor ~5.

Future prospects (3)

- We have already accumulated more than 2 years of data after refurbishment.
- Assuming 100 kg fiducial mass (95g ¹²⁴Xe) and BG level of 10⁻⁴ event/day/kg/keV, the 90%CL sensitivity will reach T_{1/2} = (2-3)x10²² years.
- XMASS-1.5 (total 6 tons) will cover whole the expected range of 2vECEC.

Summary

- ¹²⁴Xe is an interesting nucleus to study double electron capture (and β^+ EC, $\beta^+\beta^+$).
- We performed a search for 2v double electron capture using 132 days of commissioning data collected with the XMASS-I detector.
 - No significant excess above background was found.
 - Set lower limits $T_{1/2}^{2v2K}(^{124}Xe) > 4.7x10^{21}$ years and $T_{1/2}^{2v2K}(^{126}Xe) > 4.3x10^{21}$ years (90% CL)
- We have already accumulated more than 2 years of data after refurbishment.
- XMASS-1.5 will cover whole the expected range of $^{124}\mbox{Xe}$ 2v ECEC.

Backup slides

Theoretical calculation for $^{124}\mbox{Xe}~2\nu$ ECEC

Model	T _{1/2} (2vECEC) (yr)	Reference
QRPA	(0.4-8.8)x10 ²¹	Suhonen (2013)
QRPA	(2.9-7.3)x10 ²¹	Hirsch et al. (1994)
SU(4) _{στ}	(7-17.7)x10 ²¹	Rumyantsev et al. (1998)
PHFB	(7.1-18.0)x10 ²¹	Singh et al. (2007)
PHFB	(61.4-155.1)x10 ²¹	Shukla et al. (2007)
MCM	(390-986.1)x10 ²¹	Aunola et al. (1996)

Experimental results on ¹²⁴Xe 2nECEC

Experiment	T _{1/2} (10 ²¹ yr)	¹²⁴ Xe mass	Livetime	Reference
Abe et al. (XMASS)	>4.7	39 g	132 days	This work
Gavrilyuk et al.	>2.0	59 g	134 days	arXiv:1507.04520
Mei et al.	>1.66	34 g	225 days	Phys. Rev. C89 (2014) 014608
Aprile et al. (XENON100)	>0.65	29 g	225 days	arXiv:1609.03354

Detector calibration

- Various calibration sources: ⁵⁵Fe, ¹⁰⁹Cd, ²⁴¹Am, ⁵⁷Co, ¹³⁷Cs
- Light yield, optical parameters, position reconstruction

Data set and event selection (1/2)

• Data set

Dec 24, 2010 ~ May 10, 2012 (Total livetime of 165.9 days)

• Pre-selection

- > No outer detector trigger is associated with the event.
- > The event is separated from the nearest event by at least 10 msec.
- RMS spread of hit timings of the event is less than 100 nsec.
- > Dead time due to pre-selection reduces the total effective livetime to 132.0 days.
- Fiducial volume cut (Radius cut)
 - > Event vertex is reconstructed based on the observed light distribution in the detector.
 - Select events with the reconstructed position is within 15 cm from the center.
 - Fiducial mass of natural xenon is 41kg (It contains 39g of ¹²⁴Xe)

Data set and event selection (2/2)

Timing cut

➢ Hits' timing is used to reject events from the detector inner surface that are wrongly reconstructed. $\delta T_m = t_{\text{mean of 2nd half of hits}} - t_{1\text{st hit}}$

 $\delta T_m = t_{\text{mean of 2nd half of hits}} - t_{1\text{st hit}}$

- \blacktriangleright Events with smaller δ Tm are less likely to be surface BG and selected.
- Band-like pattern cut
 - > BG events occurred in groves in the inner detector surface make band-like pattern.
 - Max. PE in a band of width 15cm $F_{R} =$ Total PE in the event
 - \succ Events with larger F_B are likely to be those BG and rejected.

PMT position z [mm]

Systematic uncertainty in signal prediction

Item	Fractional uncertainty		
Abundance of ¹²⁴ Xe	+/-8.5%		
Liquid xenon density	+/-0.5%		
Energy scale	+0%, -8.6%		
Energy resolution	+0%, -5.3%		
Scintillation decay time	+0%, -7.1%		
Radius cut (R<15cm)	+0%, -6.7%		
Timing cut (T<12.54ns)	+3%, -0%		
Band cut (B<0.248)	+/-5%		
Total	+10.3%, -17.2%		

- A sample was taken from our detector and its isotope composition was measured.
- Systematic uncertainty in signal efficiency was estimated from comparisons between data and MC simulation for ²⁴¹Am (60keV γ) calibration data at various positions.

Limit on ¹²⁴Xe 2v 2K-capture half-life

- We derive a lower limit using a Bayesian method
- Conditional probability density function for the decay rate Γ

$$P(\Gamma|n_{obs}) = \iiint \frac{e^{-\mu}\mu^{n_{obs}}}{n_{obs}!} \times P(\Gamma)P(\lambda)P(\varepsilon)P(\varepsilon_{corr})P(b)d\lambda d\varepsilon d\varepsilon_{corr}db$$

where $\mu = (\Gamma \lambda \varepsilon + b) \varepsilon_{corr}$

• 90% confidence level limit

$$\frac{\int_{0}^{\Gamma_{limit}} P(\Gamma|n_{obs}) d\Gamma}{\int_{0}^{\infty} P(\Gamma|n_{obs}) d\Gamma} = 0.9$$

 $\begin{array}{l} \lambda: \mbox{ exposure} \\ \epsilon: \mbox{ signal efficiency (uncorrelated with BG)} \\ \epsilon_{\mbox{ corr}}: \mbox{ correlated efficiency} \\ b\epsilon_{\mbox{ corr}}: \mbox{ number of BG events in the signal region} \end{array}$

$$T_{1/2}(2\nu 2K) > \frac{\ln 2}{\Gamma_{limit}} = 4.7 \times 10^{21}$$
 years (90%CL)

Data/MC comparison for 241Am calibration data

26

Contributions from right-handed current

$$H_{eff} = \frac{G_F}{\sqrt{2}} \left(J_L J_L^{\dagger} + \eta J_R J_L^{\dagger} + \lambda J_R J_R^{\dagger} \right) + h. d$$

(a) ⁷⁶Ge: $T_{1/2}$ =(1.5+/-0.5)x10²⁴ yr (solid) ¹³⁶Xe: $T_{1/2}$ =(1.5+/-0.5)x10²⁴ yr (dash)

 $\langle \lambda \rangle \times 10^{6}$

$$T_{1/2}^{-1} = C_{mm} \left(\frac{\langle m_{\nu} \rangle}{m_e}\right)^2 + C_{\eta\eta} \langle \eta \rangle^2 + C_{\lambda\lambda} \langle \lambda \rangle^2 + C_{\mu\lambda} \langle \eta \rangle \langle \lambda \rangle^2$$

(b) ⁷⁶Ge: T_{1/2}=(1.5+/-0.5)x10²⁴ yr (solid) ¹²⁴Xe: T_{1/2}=(1.5+/-0.5)x10²⁵ yr (dash)

(c) ⁷⁶Ge: $T_{1/2}$ =(1.5+/-0.5)x10²⁴ yr (solid) ¹²⁴Xe: $T_{1/2}$ =(1.5+/-0.5)x10²⁶ yr (dash)

 $\langle \lambda \rangle \times 10^{6}$ $(\lambda \rangle \times 10^{6}$ -2.0 (m_{ν}) (m_{ν})

 $\langle \eta \rangle = \sum \eta U_{ej} V_{ej}$, $\langle \lambda \rangle = \sum \lambda U_{ej} V_{ej}$

M. Hirsch et al., Z. Phys. A347 (1994) 151