DEEP UNDERGROUND NEUTRINO EXPERIMENT

DUNE: Status and Prospects

Jelena Maricic, University of Hawaii at Manoa, for DUNE Collaboration Double Beta Decay and Underground Science November 10, 2016

DUNE Science Program

- Several opportunities for major scientific discoveries:
 - v oscillations ($v_{\mu}/\overline{v}_{\mu}$ disappearance, v_e/\overline{v}_e appearance)
 - δ_{CP} violation phase
 - MO (mass ordering) of neutrino masses
 - θ_{23} octant, precision test of 3-flavor neutrino model
 - Nucleon decay
 - Detection of galactic-core supernovae neutrinos
 - Tests of neutrino NSI (Non-Standard Interactions) and measure cross-sections for particle interactions on argon.

DUNE Collaboration

- Strong, international collaboration (from 2014):
- 950 collaborators
- 161 institutions
- 30 countries
- Welcomes theorists and welcomes you

DUNE/LBNF: Technical Elements

LBNF IS MORE THAN JUST A BEAM

- What does it take for LBNF to support DUNE's elaborate program?
 - Major partners: FNAL, CERN and SURF
 - Construction and maintenance of underground and surface facilities at SURF, capable of hosting a 4-module LAr TPCs with over 70 kton LAr.
 - Cryostats, refrigeration and purification systems to operate all detectors
 - A high-power, wide-band, tunable, neutrino beam at FNAL
 - Underground and surface facilities at FNAL hosting near detector and potentially other neutrino experiments

The LBNF Beamline

- Conventional horn-focused Beam Line
 - Extracts 60 120 GeV protons from FNAL Main Injector.
 - 101 mrad pitch to get to FD in S. Dakota
 - ~200 m Decay pipe
 - ND hall at boundary of FNAL site
 - Critical contributions from international partners (UK, CERN)

Optimizing the Focusing System

3 Horn Optimized 2 Horn Optimized

Work in Progress

Decay pipe

Reference

- Based on genetic algorithm developed for LBNO.
- Vary: proton energy 60-120 GeV, horn shape/size/current/position, target size/shape/position/materials, decay pipe length/diameter.

2nd

2

×10⁹

60

50

40

30

20

10

GeV / m² / Yea

Jnoscillated vus

1st osc max

- Green: LBNE reference
- Blue: DUNE optimized
 - longer target $(2\lambda \rightarrow 5\lambda)$ + longer 1st horn
 - larger (radially) 2nd horn
- Red: future optimizations split 1st horn into two (2nd max enhancement)

Red: LBNE reference, Blue: optimized horn position

Space reserved for more optimized horn system (also needed for 2.4 MW)

v_u Energy (GeV)

Major Upgrades to FNAL Accelerator Complex

Proton Improvement Plan PIP

- PIP 2016 beam upgrades for NOVA (700 kW)
- PIP-II 2025

Neutrino Beam

- 1.03 MW at 60 GeV
- 1.07 MW at 80 GeV
- 1.20 MW at 120 GeV

eutrino Be

elerator Test Area

amline Accelerator Technology Complex

Illinois Accelerator Research Center

Superconducting Linac Part of proposed PIP II projectly (Decommissioned)

and the second se

Main Injector and Recycler

PIP-III in R&D phase, but many components from PIP-II designed for 2.4 MW beam: > 2.0 MW at 60 GeV

> 2.4 MW at 120 GeV

Protons Neutrinos Muons Targets R&D Areas

Sanford Underground Research Facility

10

South Dakota

- Attractive deep site: 4300 mwe
- Hosted Homestake neutrino experiment
- Accommodates 4 detector chambers and accompanying utilities
- Built-in flexibility to accommodate all detector needs, independent of design (single or dual phase LAr TPC).
- Extensive preparatory work for LBNF/DUNE already done rock sampling, test blast vibration study (03/16), shafts refurbishment, detailed cost estimate
- DOE approval pending: to begin excavation & surface building

Event display in LArTPC (MicroBooNE MC)

- LAr TPC: excellent tracking and calorimetry
- Suitable for very large detectors high signal eff. and bkg. discrimination
- High resolution 3D reconstruction charged particles ionize Ar; electrons drift to anode wires (~ms) for xy coordinate; drift time – z coordinate
- Ar scintillation light (~ns) detected by photon detectors provides t₀

FD design: Single Phase LAr TP

- Design fixed for the first 10 kton module based on LBNE modular drift cell design
- APA (anode) and CPA (cathode) suspended from ceiling like curtains
- APA with "wrapped" induction planes
- Photon detectors detect Ar scintillation with light guides and SiPMs at the end for readout

DUNE Dual-Phase LArTPC FD Design

Single TPC volume with Amplification in gas phase (LBNO design):

- 12m max drift (vertical), LEM (Large Electron Multiplier) read-out
- Features excellent S/N: ~100/1

Near detector

- Monitors initial neutrino beam
- Fine grain tracker magnetized neutrino detector (design based on success of NOMAD and T2K ND).
- Includes muon detectors in absorber hall.
- ND design alternatives/additions:
 - LAr TPC
 - high pressure gas Ar TPC
 - for direct comparison with FD.

DUNE: Science Program

DUNE Physics Program Core

Neutrinos

Antineutrinos

1300 km Normal MH δ_{CP} = -π/2 δ_{CP} = 0 $\delta_{CP} = +\pi/2$ $\theta_{13} = 0$ (solar term)

- $Sin^2(2\theta_{13})$ size of event sample
 - δ_{CP} amplitude of oscillations
- Δm^{2} 's frequency of oscillations
- MO both amplitude and frequency

10

Oscillations in wide band beam effective for simultaneous measurement of MO, δ_{CP} and v mixing angles. 17

Expected event rates for measurement

δ_{CP} , MO and Oscillations

 Measurements (δ_{CP}, MO, θ₂₃, θ₁₃) rely on analysis of 4 combined samples (optimized beam, 56% LBNF uptime, δ = 0,

ν mode / 150 kt-MW-yr	ve appearance	ν_{μ} disappearance	
Signal events (NH / IH)	945 (521)	7929	AT THE
Wrong-sign signal (NH /IH)	13 (26)	511	NIN
Beam ve background	204	-	<u>+</u>
NC background	17	76	ļ
Other background	22	29	1
Anti-v mode / 150 kt-MW-yr	ve appearance	νμ disappearance	T
Anti-v mode / 150 kt-MW-yr Signal events (NH / IH)	ve appearance 168 (438)	ν _μ disappearance 2639	ATTAT
Anti-v mode / 150 kt-MW-yr Signal events (NH / IH) Wrong-sign signal (NH /IH)	ve appearance 168 (438) 47 (28)	ν _μ disappearance 2639 1525	NTM
Anti-v mode / 150 kt-MW-yr Signal events (NH / IH) Wrong-sign signal (NH /IH) Beam ve background	Ve appearance 168 (438) 47 (28) 105	ν _μ disappearance 2639 1525 –	
Anti-v mode / 150 kt-MW-yr Signal events (NH / IH) Wrong-sign signal (NH /IH) Beam ve background NC background	Ve appearance 168 (438) 47 (28) 105 9	 ν_μ disappearance 2639 1525 - 41 	- Ist - Ist - ATAI

Neutrino spectra in DUNE

Long baseline: Matter effects are large ~ 40%

Wide-band beam: Measure v_e appearance and v_{μ} disappearance over range of energies MO & CPV effects are separable

Dependence of CP Violation on N

- Sensitivity to CPV after 300 kt-MW-yrs
- Software configuration available on arXiV: 1606.09550
- Bands represent range of beam configurations

DUNE: CPV and MO sensitivity

• Sensitivity to MO as:

- function of exposure in kton-MW-yrs and
- Fraction of δ_{CP} values with given sensitivity or greater.

Nucleon Decay Sensitivity

- ✓ Proton decay test of baryon number conversation.
- ✓ May explain matter-antimatter asymmetry.
- ✓ Many accessible modes, including SUSY favored: $p \rightarrow K^+ \overline{v}$
- Sensitive, bkg. free searches thanks to imaging, dE/dx and calorimetry in LAr TPC.

DUNE: Status and Prospects, J. Maricic

Super-nova neutrino burst detect

- About 99% of the gravitational binding energy of the proto-neutron star goes into neutrinos \rightarrow few thousand events expected for galactic SN
- Dominant process:

$$\nu_e + {}^{40}\mathrm{Ar} \rightarrow e^- + {}^{40}\mathrm{K}^*$$

*Contrary to water/LS Detectors – antinu dominate

- LAr uniquely sensitive to neutronization process at ~30ms.
- Elastic event may give directionality.
- Expect 2-3 core-collapse supernovae in the Milky Way per century ≈ 3500 neutrinos in 40kt DUNE for SN@
 DUNE CDR

DUNE: Large Scale Prototypes

R&D toward 10 kton LAr TPC

- Scaling up to 10 kton: ~0.5-1 kton prototypes necessary to test all critical technical aspects for single and dual phase design
- Experience needed for building, maintaining, operation & data analysis of large LAr TPCs.
- R&D schedule
 - 35-ton s-phase TPC at FNAL (completed) 4 full size APA & 1 CPA
 - 3x1x1 m³ d-phase TPC at CERN (2016)
 - S-p and d-p protoDUNE at CERN (2018) in the beam and with physics program

Full size readout plane, cathode, light collection, 1/2 drift distance (6 m)

Single Ph

3.6m

Cage

CPAs

3.6m

Field Cage

DUNE: Path Forward

DUNE Schedule

- 2017 Cavern excavation
- 2018 ProtoDUNEs (SP & DP) operational at CERN
- 2019 Technical Design Review (DOE & international Agencies)
- 2020 Cryostat construction
- 2022 Far detector installation (1st module)
- 2023 Far detector installation (2nd module)
- 2024 20 kton operational start for taking non-beam physics
- 2026 First beam operations at 1.2 MW

Summary

- DUNE is going forward with a strong scientific program:
 - CPV phase, MO, nucleon decay, supernovae v, cross-sections...
- DUNE/LBNF project: 40 kt LAr TPC FD, fine grained ND and 1.2 MW wide-band neutrino beam 1300 km away
- DUNE/LBNF enjoys strong international support:
 - FNAL DUNE/LBNF is the lab's priority + synergy with SBN
 - US Government DOE approved LBNF FY 2017 budget (\$45M \$55M)
 - CERN neutrino platform for ProtoDUNEs at CERN, key roles in LBNF and SBN program

Exciting time for neutrino physics and DUNE!

