Sterile neutrinos and experimental searches for their existence

Martin Slezák

Max Planck Institute for Physics, Germany

International Workshop on "Double Beta Decay and Underground Science" November 2016, Osaka, Japan

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Outline

- what is a sterile neutrino?
- motivation for possible **eV** and **keV-**scale sterile neutrinos
- experimental searches for sterile v
- conclusion and outlook

What is a sterile neutrino?

- hypothetical neutral lepton with no ordinary weak interactions
- can mix with active neutrinos
- theories beyond the Standard Model •

 v_e

 v_{μ}

 V_{τ}

Vs

Sterile neutrinos at the eV-scale

Motivation for eV-scale sterile neutrinos

 eV-scale sterile neutrinos as possible explanation for several experimental "anomalies" = observations not compatible with the 3-flavor v mixing

short-baseline accelerator experiments

LSND: $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$

- pion beam dump, 30 m baseline
- excess of events above expectation
- not clarified by other similar experiments
- possible interpretation: v oscillation $\Delta m_S^2 \gtrsim 0.2 \; {\rm eV^2} \gg m_{\rm atm}^2$

Motivation for eV-scale sterile neutrinos

- Δp. Δg≥±t
- eV-scale sterile neutrinos as possible explanation for several experimental "anomalies" = observations not compatible with the 3-flavor v mixing

short-baseline reactor experiments

disappearance of $\overline{\nu}_e$ from nuclear reactors

- rate theoretically, baseline < 100 m
- deficit of observed events
- realiability of calculation?
- possible interpretation: v oscillation $\Delta m_S^2 \gtrsim 0.5 \; {\rm eV^2} \gg m_{\rm atm}^2$

Motivation for eV-scale sterile neutrinos

 eV-scale sterile neutrinos as possible explanation for several experimental "anomalies" = observations not compatible with the 3-flavor v mixing

radiochemical experiments

calibrations of solar ν_e detectors

- mono-energetic v_e from ⁵¹Cr, ³⁷Ar
- smaller number of measured events
- uncertainties in cross-sections?
- possible interpretation: v oscillation $\Delta m_S^2 \gtrsim 1 \; {\rm eV^2} \gg m_{\rm atm}^2$

Resolving the anomalies

short-baseline accelerator experiments $\Delta m_S^2 \sim 1 \text{ eV}^2$ $\sin^2 2\theta_S \sim 0.01$

- tension with limits derived from other app. or disapp. searches → need more data!
- search for L/E oscillation pattern, complement with integral rate measurement
- compact source < 1 m, vertex resolution << 1 m</p>
- few % statistical & systematic uncertainties

Search for eV-scale sterile v at reactors

- for $\Delta m_S^2 \sim 1 \text{ eV}^2$ and $E \sim 1 \text{ to } 8 \text{ MeV} \rightarrow L < 10 \text{ m} \rightarrow \text{very short baselines}$
- measurement of relative reactor flux and spectrum at different baselines
- independent of reactor models/predictions
- compact core: research reactors
- background:
 - shallow overburden
 - fast neutrons, high-energy gammas

Search for eV-scale sterile v with RA sources

- Ap. Ag
- utilize intense RA sources with detectors capable of resolving L/E pattern

electron capture \rightarrow monoenergetic v_e

- low cross section, sensitive to background
- irradiation in reactor
- ⁵¹Cr: SOX-Cr, BEST
- ³⁷Ar: RICOCHET

β^{-} -decay \rightarrow continuous energy $\bar{\nu}_{e}$

- higher cross section, effective tagging
- abundant fission product
- CeLAND, CeSOX

tritium decay → imprint on electron spectrum

- super-allowed transition, low Q-value
- good spectrum description
- KATRIN, PROJECT 8

Concept of CeSOX

- Borexino detector + ¹⁴⁴Ce-¹⁴⁴Pr source
- 5 PBq in a special capsule
- shape: search for a neutrino oscillation pattern
- rate+shape: include ratio of observed to expected rate

Sterile neutrinos and experimental searches for their existence

Concept of KATRIN

- precision measurement of tritium β-decay electron spectrum shape
- intense windowless gaseous molecular tritium source
- close to endpoint: shape modified due to sterile neutrino

Search for eV-scale sterile v using accelerators

• for $\Delta m_S^2 \sim 1 \text{ eV}^2$ and $E \sim \text{GeV} \rightarrow L < 10 \text{ km} \rightarrow \text{short baseline}$

type	source	appearance / disappearance	oscillation channels	projects
isotope decay at rest	p + ⁹ Be → ⁸ Li + 2p n + ⁷ Li → ⁸ Li ⁸ Li → ⁹ Be +e ⁻ + $\overline{\nu}_e$	dis.	$\overline{\nu}_e \rightarrow \overline{\nu}_e$	IsoDAR
pion (kaon) decay at rest	$\begin{array}{c} \pi^+ \rightarrow \mu^+ \nu_\mu \\ \rightarrow e^+ \overline{\nu}_\mu \nu_e \end{array}$	app. & dis.	$\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}, \nu_{e} \rightarrow \nu_{e}$	OscSNS, KDAR, JPARC-MLF
pion decay in flight	$\begin{array}{c} \pi^+ \rightarrow \mu^+ \nu_\mu \\ \rightarrow e^+ \overline{\nu}_\mu \nu_e \end{array}$	app. & dis.	$ u_{\mu} \rightarrow v_{e}, \overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e} $ $ \nu_{\mu} \rightarrow \nu_{\mu}, \nu_{e} \rightarrow \nu_{e} $	nuPRISM, SBN
low-energy neutrino factory	$\begin{array}{l} \mu^+ \rightarrow e^+ \overline{\nu}_{\mu} \nu_e \\ \mu^- \rightarrow e^- \nu_{\mu} \overline{\nu}_e \end{array}$	app. & dis.	$\begin{array}{l} \nu_{e} \rightarrow \nu_{\mu}, \overline{\nu}_{e} \rightarrow \overline{\nu}_{\mu} \\ \nu_{\mu} \rightarrow \nu_{\mu}, \overline{\nu}_{e} \rightarrow \overline{\nu}_{e} \end{array}$	vSTORM

Sterile neutrinos and experimental searches for their existence

Interplay of different experiments

- $\Delta_{p} \cdot \Delta_{q} \ge \pm t$
- competitive complementary ways to confirm / rule out eV-scale sterile v

Sterile neutrinos at the keV-scale

Motivation for keV-scale sterile neutrinos

Energy content of the Universe

- need of non-baryonic dark matter
- active neutrinos only < few %
- 95 % of the Universe's content not understood

Physics beyond the Standard Model

- v-minimal SM: minimal extension to solve a maximal number of open questions
- N₁ in keV region: dark matter
- N₂, N₃ in GeV region: give masses to vs and produce baryon asymmetry of the Universe

Search for keV-scale sterile v

x-ray spectra of astrophysical objects

- $N \rightarrow \gamma + \nu$
- cosmological lifetime
- weak atomic and instrumental lines
- Micro-X, eROSITA, ASTRO-H2?

direct detection using large-scale detectors

- $\nu_{\rm S} + e^- \rightarrow \nu_i + e^-$
- $\nu_{\rm S} + {\rm N}(A, Z)$ $\rightarrow {\rm N}(A, Z + 1) + {\rm e}^{-}$
- signal rates ~1/year (!)
- source scattering

kinematics of β-decay

- ${}^{3}\text{H} \rightarrow {}^{3}\text{He} + e^{-} + \bar{\nu}_{e}$
- ${}^{163}\text{Ho} + e^- \rightarrow {}^{163}Dy^* + \nu_e$ $\Rightarrow {}^{163}Dy^* \rightarrow {}^{163}Dy + \gamma/e^-$
- R&D needed for large rates
- Troitsk nu-mass, KATRIN, ECHo

Current constraints on keV-scale sterile v

- phase-space density constraints
- x-ray constraints
- dark matter overproduction
- laboratory experiments
- need laboratory input
- > very small mixing angle: $\sin^2 \theta < 10^{-6}$ (!)

How do we get to 10⁻⁶ with laboratory experiments?

Tritium β-spectrum revisited

- differential β -spectrum: $\frac{d\Gamma}{dE} = \cos^2 \theta \frac{d\Gamma}{dE} (m_{\text{light}}) + \sin^2 \theta \frac{d\Gamma}{dE} (m_{\text{heavy}})$ •
- need high statistics
- extremely low systematic uncertainties $\overline{\underline{s}}$ dL/dE

Sterile neutrinos and experimental searches for their existence

KATRIN/TRISTAN project

- KATRIN provides high-luminosity tritium source: $1.5 \cdot 10^{10} e^{-/s} \rightarrow 2-3$ years
- current detector system capable of "only" 10⁶ e⁻/s

Sterile neutrinos and experimental searches for their existence

 $1 \Delta_p \cdot \Delta_q \ge \frac{1}{2} t$

Electron capture experiments

calorimetric measurement (source \subset detector) of de-excitation energy spectrum de-excitation spectrum for ¹⁶³Ho

10

10

 10°

- whole spectrum measured at once
- high statistics needed as well
- systematic effects under study

eV-scale sterile v: conclusion

- accelerator, reactor and gallium anomalies calling for clarification
 - $-\Delta m^2 \approx eV^2$ sterile neutrino or experimental artifacts?
- reactor antineutrinos 3 years timescale
- radioactive sources 3 years timescale (KATRIN, CeSOX)
- neutrino beams 5–10 years timescale

Within a few years the anomalies will be resolved!

keV-scale sterile v: conclusion

- keV-ish neutrinos are dark matter candidates
- stringent limits from astrophysical observations
 - need input from laboratory experiments
- white paper (accepted for publication)
- approaches to search for keV-v in laboratory
 - TRISTAN @ KATRIN (tritium β-spectroscopy)
 - electron capture experiments
- more ideas?

Thank you for your attention!