Dark Matter: LUX and LZ

Harry Nelson / LUX, LZ & UCSB

DBD16 at Osaka

November 10, 2016
Benchmark Process

Spin-Independent Glue: n/p indifferent, coherent, $\sigma \approx A^{(2-4)}$

Xenon: $A \approx 131$
Xenon

- **Dense Liquid**
- **Natural Scintillator**
- Long lived radioisotopes are $2\nu\beta\beta$ decays, very long half lives
- 9 `stable’ isotopes
- 2 with unpaired neutron

<table>
<thead>
<tr>
<th>^A_ZXe</th>
<th>$\tau_{1/2}$ or f</th>
<th>J^p</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{122}Xe</td>
<td>20 h</td>
<td>0$^+$</td>
</tr>
<tr>
<td>^{123}Xe</td>
<td>2.1 h</td>
<td>$(1/2)^+$</td>
</tr>
<tr>
<td>^{124}Xe</td>
<td>0.10 %</td>
<td>0$^+$</td>
</tr>
<tr>
<td>^{125}Xe</td>
<td>17 h</td>
<td>$(1/2)^+$</td>
</tr>
<tr>
<td>^{126}Xe</td>
<td>0.09 %</td>
<td>0$^+$</td>
</tr>
<tr>
<td>^{127}Xe</td>
<td>36 d</td>
<td>$(1/2)^+$</td>
</tr>
<tr>
<td>^{128}Xe</td>
<td>1.91 %</td>
<td>0$^+$</td>
</tr>
<tr>
<td>^{129}Xe</td>
<td>26.4 %</td>
<td>$(1/2)^+$</td>
</tr>
<tr>
<td>^{130}Xe</td>
<td>4.1 %</td>
<td>0$^+$</td>
</tr>
<tr>
<td>^{131}Xe</td>
<td>21.2 %</td>
<td>$(3/2)^+$</td>
</tr>
<tr>
<td>^{132}Xe</td>
<td>26.9 %</td>
<td>0$^+$</td>
</tr>
<tr>
<td>^{133}Xe</td>
<td>5.2 d</td>
<td>$(3/2)^+$</td>
</tr>
<tr>
<td>^{134}Xe</td>
<td>10.4 %</td>
<td>0$^+$</td>
</tr>
<tr>
<td>^{135}Xe</td>
<td>9.1 h</td>
<td>$(3/2)^+$</td>
</tr>
<tr>
<td>^{136}Xe</td>
<td>8.9 % (2.2×10^{21} y)</td>
<td>0$^+$</td>
</tr>
</tbody>
</table>
The Milky Way

\[n \approx \frac{0.3 \text{ GeV}}{M_D c^2} \times \frac{1}{\text{cm}^3} \]

\[\beta \approx 0.8 \times 10^{-3} \]
Signal: Nuclear Recoils (NR) from WIMPs
Lead, South Dakota

10 Nov. 2016

DBD16 - Osaka
Sanford Underground Research Facility

Davis Cavern 1480 m (4200 mwe) LUX Water Tank

LUX/LZ Here
The LUX collaboration

Berkeley Lab / UC Berkeley
Bob Jacobsen PI, Professor
Murdock Gilchriese Senior Scientist
Kevin Lesko Senior Scientist
Michael Witherell Lab Director
Peter Sorensen Scientist
Simon Florucci Project Scientist
Atila Dobi Postdoc
Daniel Hogan Graduate Student
Kate Kamdin Graduate Student
Kelsey Oliver-Mallory Graduate Student

Lawrence Livermore
Kareem Kanzaz Staff Physicist
Jingke Xu Postdoc
Brian Lenardo Graduate Student

LIP Coimbra, Portugal
Isabel Lopes PI, Professor
Jose Pinto da Assistant Professor
Vladimir Solovoy Senior Researcher
Francisco Neves Auxiliary Researcher
Alexander Lindote Postdoc
Claudio Silva Postdoc
Paulo Bras Graduate Student

SLAC Stanford (CWRU)
Dan Akerib PI, Professor
Thomas Shutt PI, Professor
Tomasz Biesiadzinski Research Associate
Christina Ignarra Research Associate
Wing To Research Associate
Rosie Bramante Graduate Student
Wei Ji Graduate Student
T.J. Whitis Graduate Student

SD Mines
Xinhua Bai PI, Professor
Doug Tiedt Graduate Student

SDSTA / Sanford Lab
David Taylor Project Engineer
Markus Horn Research Scientist
Dana Byram Support Scientist

UC Santa Barbara
Harry Nelson PI, Professor
Susanne Kyre Engineer
Dean White Engineer
Carmen Carmona Postdoc
Scott Haselschwardt Graduate Student
Curt Nehrkorn Graduate Student
Melih Solmaz Graduate Student
Chamkaui Ghag PI, Lecturer
James Dobson Postdoc
Sally Shaw Graduate Student

University of Maryland
Carter Hall PI, Professor
Jon Balaity Graduate Student
Richard Knoche Graduate Student

University of Rochester
Frank Wolfs PI, Professor
Wojtek Skutski Senior Scientist
Eryk Druszkiewicz Graduate Student
Dev Ashish Khattan Graduate Student
Diktat Koyuncu Graduate Student
M. Moongweeluwan Graduate Student
Jun Yin Graduate Student

University of South Dakota
Dongming Mei PI, Professor
Chao Zhang Postdoc

University of Wisconsin
Kimberly Palladino PI, Asst Professor
Shaun Alsum Graduate Student
LUX Installed (Fall 2012)
In the tank and detailed cross section

- 370 kg xenon
- 250 kg active region
- \(\approx 100 \) kg fiducial mass
Liquid Xenon TPC Principle

Z position from S1 – S2 timing

X-Y positions from S2 light pattern

Reject gammas (Electron Recoils) by charge (S2) to light (S1) ratio.

Baseline > 99.5% rejection.

ionization electrons

UV scintillation photons (~175 nm)
Typical Event in LUX

- S1 summed across all channels: 0 to 0.8 amplitude (phe/10 ns) vs time (μs)
- S2 summed across all channels: 0 to 12 amplitude (phe/10 ns) vs time (μs)
- 95% single photoelectrons > threshold
- Triggered on S2

10 Nov. 2016
DBD16 - Osaka
Gamma Ray Environment

Signal: <10 keV$_{ee}$
HNN Calibration

NR: n from DD: double scatter, event by event E_{Xe}

ER: $T=^3\text{H}$ in CH_3T

DBD16 - Osaka
Double Scatter Neutrons – Ionization for NR

Energy from kinematics

Slices in energy

Sys. uncertainty due to
S2 corrections,
g2, and neutron
source energy spectrum

Sys. uncertainty due to position
reconstruction energy bias correction

10 Nov. 2016
High Statistics LUX Calibrations

Electron Recoil (ER) Background
tritiated methane
(100,000’s)

Nuclear Recoil (NR) Signal
single-scatter DD neutrons

Cut/Count: <0.5% “leak”
LUX WIMP Search Data Guide

● WS2013 run: 95 live days
 ▶ First result, published 2014
 ▶ Improved with calibrations: published 2016
 □ Low mass WIMPs

● WS2014-16 run: 332 live days
 ▶ Calibrate drifts in the detector
 ▶ Raw data here

● Show combined limit curve
Combined Limit Curve

- DarkSide-50 2015
- XENON100 2016
- PandaX-II 2016
- LUX WS2013
- LUX WS2013+WS2014–16

WIMP-nucleon cross section [zb]

WIMP-nucleon cross section [cm²]

WIMP Mass [GeV/c²]
LZ = LUX + ZEPLIN

37 Institutions, 217 People

- Black Hills State University
- Brookhaven National Laboratory (BNL)
- Brown University
- Fermi National Accelerator Laboratory (FNAL)
- Kavli Institute for Particle Astrophysics and Cosmology (KIPAC)
- Lawrence Berkeley National Laboratory (LBNL)
- Lawrence Livermore National Laboratory (LLNL)
- Northwestern University
- Pennsylvania State University
- SLAC National Accelerator Laboratory
- South Dakota School of Mines and Technology
- South Dakota Science and Technology Authority (SDSTA)
- STFC Rutherford Appleton Laboratory (RAL)
- Texas A&M University
- University at Albany (SUNY)
- University of Alabama
- University of California (UC), Berkeley
- University of California (UC), Davis
- University of California (UC), Santa Barbara
- University of Maryland
- University of Massachusetts
- University of Michigan
- University of Rochester
- University of South Dakota
- University of Wisconsin-Madison
- Washington University in St. Louis
- Yale University

10 Nov. 2016 DBD16 - Osaka
At Oxford, August 2016
LZ 7 t LXe active – fits in LUX Water Tank

Passed DOE CD-1, CD-2, partially CD-3;
Complete CD-3 expected Jan. `17
Operations: Apr. `20
LZ System
7 tonne active mass
liquid Xe TPC, 10 tonnes total

Cathode
high voltage
feedthrough

Liquid Xe
heat exchanger

Neutron beampipe

Instrumentation conduits

Existing water tank

Gadolinium-loaded liquid scintillator

Outer detector PMTs
Impact of the Outer Detector

Fiducial mass fraction: from $\approx 50\%$ to $\approx 80\%$

In case of a suspected signal, the Outer Detector provides cross checks on backgrounds
Backgrounds – Uniform Through LXe Volume

\[\nu \]
- Solar (pp)

\[\nu \]
- Solar (\(^8\)B)
- Atmospheric, SN

10 Nov. 2016

ER

Kr/Rn \(\beta \) decay

NR
LZ Simulation - shapes crucial

(Normalization not representative of rates)
NR Background Tallies – 1000 days, 5.6 t

- 8B Nuclear Recoils – like 6 GeV WIMP
 - Sensitive to low threshold detector response
 - ≈ 7 (baseline) to ≈ 300 (goal)

- Other nuclear recoils
 - ≈ 0.5 nearby material, strong spatial dependence
 - dominant: dust!
 - ≈ 0.7 due to neutrinos, uniform in LXe
 - dominant: atmospheric
ER Background Tallies – 1000 days, 5.6 t

- pp solar ≈ 255
- $^{136}\text{Xe } 2\nu\beta\beta \approx 67$ (very low energy)
- Nearby material ≈ 11 (strong spatial dependence in LXe)

- Internal Radioactive Gases, uniform in LXe
 - 72 (goal) to ≈ 1000 (baseline)
 - Dominantly $^{222}\text{Radon emanation}$
 - Vigorous screening program
Baseline Simulation 1000 days, 5.6 t

- Background - ER
- WIMP (3σ significance, 40 GeV) 6×10^{-48} cm2
- 8B

The graph shows the log10(S2/S1) vs. S1 [phd] with different energy levels indicated:
- 1 keV$_{ee}$
- 5 keV$_{nr}$
- 3 keV$_{ee}$
- 14 keV$_{nr}$
- 5 keV$_{ee}$
- 22 keV$_{nr}$

10 Nov. 2016

DBD16 - Osaka
Projected Sensitivity (Spin Independent)

LZ projected, 1000 days, 5.6 tonnes

- 90% CL Median CDR CD1/3a
- 90% CL Median (Baseline) TDR, CD3
- 90% CL Median (Goal) TDR, CD3

LZ Baseline $\sigma(40 \text{ GeV}) = 2.3 \times 10^{-48} \text{ cm}^2$
LZ Goal $\sigma(40 \text{ GeV}) = 1.1 \times 10^{-48} \text{ cm}^2$

LZ Baseline ≈ 7 8B NR
LZ Goal ≈ 300 8B NR
$^{136}\text{Xe } 0\nu\beta\beta - 1000 \text{ days, } 5.6 \text{ t in LZ}$

● Challenges

▸ Experiment optimized for $1.5-10 \text{ keV}_{ee}$
▸ More shielding of ^{208}Tl, ^{214}Pb gammas needed
▸ Power of spatial shape, Bragg ID, etc..

● Preliminary estimates... $\approx 1\text{t fiducial}$

▸ Unenriched... $\approx 10^{26} \text{ y}$
▸ $90\% \ ^{136}\text{Xe}$... $\approx 10^{27} \text{ y}$

● If a WIMP signal emerges, change the isotopic abundance Xe target, to understand WIMP interaction with nuclei
Summary

● 2-phase liquid xenon TPCs push the frontier of WIMP sensitivity, and LUX led the way for a few years

● LUX has substantially advanced the art of calibration

● LZ will operate in April 2020 and is projected to achieve best spin independent sensitivity better than $3 \times 10^{-48} \text{cm}^2$, and start to see irreducible neutrino background
THANKS!
Astrophysics... 84.5% of the matter in the universe is different than us.

Weakly Interacting Massive Particle (WIMP)
The WIMP

\[\chi^0 \rightarrow q, \ell, \gamma, g \ldots \]

\[\Omega_{\chi^0} / \Omega_{\text{ordinary}} \approx 5 \]

\[M_{\chi} c^2 \approx 100 \text{ GeV} \]

`Weak Scale`

\[\bar{q}, \bar{\ell}, \gamma, g \ldots \]
Direct Detection

\[\chi^0 \rightarrow q, \ell, \gamma, g \ldots \]

\[\sigma \approx 10^{-(40 \to 50)} \text{cm}^2 \]

\[10^{-(4 \to 14)} \text{pb} \]
Comparison of Nobles

<table>
<thead>
<tr>
<th>Element</th>
<th>A (nat)</th>
<th>Atm (ppmv)</th>
<th>bp (K)</th>
<th>Sc. E. (eV)</th>
<th>Density (gm/cm³)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helium</td>
<td>4.00</td>
<td>5.2</td>
<td>4.2</td>
<td>16</td>
<td>0.13</td>
<td>Great Pulse Shape Disc</td>
</tr>
<tr>
<td>Neon</td>
<td>20.2</td>
<td>18</td>
<td>27</td>
<td>16</td>
<td>1.2</td>
<td>“</td>
</tr>
<tr>
<td>Argon</td>
<td>39.9</td>
<td>9300</td>
<td>87</td>
<td>9.8</td>
<td>1.4</td>
<td>“</td>
</tr>
<tr>
<td>Krypton</td>
<td>83.8</td>
<td>1.1</td>
<td>121</td>
<td>8.3</td>
<td>2.4</td>
<td>(^{85}\text{Kr}) (Reactors)</td>
</tr>
<tr>
<td>Xenon</td>
<td>131.3</td>
<td>0.09</td>
<td>165</td>
<td>7.1</td>
<td>3.1</td>
<td>Lower energy scint/lumi</td>
</tr>
<tr>
<td>Radon</td>
<td>≈222</td>
<td>(10^{-19})</td>
<td>211</td>
<td>4.4</td>
<td></td>
<td>Emanation afflicts above</td>
</tr>
</tbody>
</table>

10 Nov. 2016 DBD16 - Osaka
LUX being built
Signal and Background

Nucleus Recoils
$E_r \approx 30 \text{ keV}_{\text{nr}}$
$v/c \approx 0.8 \times 10^{-3}$

Electron Recoils
$E_r \approx 6 \text{ keV}_{\text{ee}}$
$v/c \approx 0.15$

χ^0 (calibrate: neutron)

γ, e^- (calibrate: tritium injection)

Discrimination – detector’s ability to distinguish these
Solution: Time / Space Bins

4 event date bins X 4 z-slices = 16 ‘segments’
NOTE: This is still the old run. Still needs to be updated with the 1 year’s worth of new data.

Xenon is the *best* element for neutron coupling (while fluorine is best for protons)
Fiducial Mass Fraction

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Active Mass (kg)</th>
<th>Fiducial Mass (kg)</th>
<th>F/A (%)</th>
<th>Best Sensitivity (cm²)</th>
<th>Livetime (y)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xenon 10</td>
<td>13.9</td>
<td>5.4</td>
<td>39</td>
<td>4.5×10⁻⁴⁴</td>
<td>0.16</td>
<td>2008</td>
</tr>
<tr>
<td>Zeplin III</td>
<td>12.6</td>
<td>5.6</td>
<td>44</td>
<td>4×10⁻⁴⁴</td>
<td>0.73</td>
<td>2012</td>
</tr>
<tr>
<td>Xenon 100</td>
<td>66</td>
<td>34</td>
<td>51</td>
<td>2×10⁻⁴⁵</td>
<td>0.61</td>
<td>2013</td>
</tr>
<tr>
<td>LUX</td>
<td>248</td>
<td>118</td>
<td>48</td>
<td>7.6×10⁻⁴⁶</td>
<td>0.26</td>
<td>2015</td>
</tr>
<tr>
<td>LUX</td>
<td>248</td>
<td>100</td>
<td>40</td>
<td>2×10⁻⁴⁶</td>
<td>0.90</td>
<td>2016</td>
</tr>
<tr>
<td>DEAP-3600</td>
<td>3600</td>
<td>1000</td>
<td>28</td>
<td>1×10⁻⁴⁶</td>
<td>3</td>
<td>2017</td>
</tr>
<tr>
<td>Xenon 1T</td>
<td>2000</td>
<td>1160</td>
<td>58</td>
<td>2×10⁻⁴⁷</td>
<td>2</td>
<td>2018</td>
</tr>
<tr>
<td>LZ</td>
<td>7000</td>
<td>5600</td>
<td>80</td>
<td>3×10⁻⁴⁸</td>
<td>3</td>
<td>2021</td>
</tr>
</tbody>
</table>

Fiducial mass fraction: from ≈50% to ≈80%

In case of a suspected signal, the Outer Detector provides cross checks on backgrounds

10 Nov. 2016 DBD16 - Osaka
Backgrounds (5.6 t, 1000 live-days) (I)

<table>
<thead>
<tr>
<th>Source</th>
<th>ER</th>
<th>NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric neutrinos</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>HEP solar neutrinos</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>Diffuse solar neutrinos</td>
<td>-</td>
<td>0.05</td>
</tr>
<tr>
<td>$\text{pp}^+\text{Be}^+\text{N}$ solar neutrinos</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td>$^{136}\text{Xe} 2\nu\beta\beta$</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Subtotal Physics (Uniform in LXe fiducial)</td>
<td>322</td>
<td>0.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>ER</th>
<th>NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Internal Surface Contamination</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td>Laboratory Walls, Cosmogenics</td>
<td>4.3</td>
<td>0.07</td>
</tr>
<tr>
<td>R11410 3” PMTs</td>
<td>1.5</td>
<td>0.01</td>
</tr>
<tr>
<td>PMT Cabling</td>
<td>1.4</td>
<td>-</td>
</tr>
<tr>
<td>Cryostat Vessel</td>
<td>0.6</td>
<td>0.01</td>
</tr>
<tr>
<td>20 other components</td>
<td>3 (27%)</td>
<td>0.05 (10%)</td>
</tr>
<tr>
<td>Subtotal External Backgrounds (Non-Uniform in LXe fiducial)</td>
<td>11</td>
<td>0.5</td>
</tr>
<tr>
<td>Subtotal</td>
<td>333</td>
<td>1.2</td>
</tr>
</tbody>
</table>
Backgrounds (5.6 t, 1000 live-days) (II)

<table>
<thead>
<tr>
<th>Source</th>
<th>ER</th>
<th>NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtotal Previous Page</td>
<td>333</td>
<td>1.2</td>
</tr>
<tr>
<td>ER (Baseline / Goal)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>222Radon – (2 / 0.1) μBq/kg</td>
<td>722</td>
<td>36</td>
</tr>
<tr>
<td>nat85Krypton (0.075 / 0.015) ppt g/g</td>
<td>125</td>
<td>25</td>
</tr>
<tr>
<td>220Radon aka Thoron – (0.1 / 0.005) μBq/kg</td>
<td>122</td>
<td>6</td>
</tr>
<tr>
<td>210Bismuth (0.1 / 0.005) μBq/kg</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>natArgon (0.45) ppb g/g</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>Subtotal Internal Backgrounds (Uniform in LXe fiducial)</td>
<td>1012</td>
<td>72</td>
</tr>
<tr>
<td>Total</td>
<td>1344</td>
<td>405</td>
</tr>
<tr>
<td>Efficiency below median of NR band</td>
<td>0.005</td>
<td>0.5</td>
</tr>
<tr>
<td>Total below median of NR band</td>
<td>6.7</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Radon Budget Estimate (Preliminary)

• To aid planning of assay schedule, identify areas likely to need mitigation
 − Added Xe gas mitigation system to reduce by 90%
• Estimates based on most comparable measurements
 − Some upper limits
 − Measured at room temperature but most cold * in LZ
 • Corrected only (conservatively) for capacitors, PMT cabling
• Dust
• Total 18.3 mBq
 − On track to achieve requirements
Axions (LUX 95 days, and LZ)

(projection for 3 years)

10 Nov. 2016

DBD16 - Osaka