# Searching for Dark Matter with DEAP



Dr Kevin Graham Carleton University

DBD16 November 10, 2016 Osaka, Japan

## **DEAP-3600 Dark Matter Search**

#### Liquid Argon for DM (Single-phase)



Scattered nucleus detected via Lar scintillation

**Good Pulse-shape discrimination** between  $\beta/\gamma$  and nuclear recoils with scintillation

Argon is easy to purify

**Very large target masses possible**, no absorption of UV scintillation photons in argon, no pileup until beyond tonne-scale

**Position reconstruction allows surface background removal**, based on photon detection (~5 cm resolution allows removal of radon daughter events from analysis)

## **DM Sensitivity**

1 tonne fiducial mass (3.6 tonnes total) designed for < 0.2 background events/year with 60 keVr threshold



# Pulse shape discrimination (PSD)



# **Background mitigation**

- $\circ$   $\beta/\gamma$  events: dominated by <sup>39</sup>Ar beta decay rate, 1 Bq/kg
  - pulse shape discrimination is very powerful in liquid argon
     ~10<sup>-10</sup>
- **surface events:** Rn daughters and other surface contamination
  - procured ultrapure materials (screening, quality assurance, co-operation



- neutron recoils: (α,n)+fission, cosmogenic μ-induced
  NO neutrons!
  - SNOLAB depth + water Cerenkov muon veto
  - clean detector materials (material assay, quality assurance)
  - shielding

## Projections for DEAP-3600 Backgrounds

| Background                    | Target count for a<br>3tonne-year<br>exposure | Mitigation                                                                                           |
|-------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------|
| <b>Neutron</b><br>In 1t LAr   | <0.2                                          | Shielding: 6000 mwe (SNOLAB), Active water shield, light guides and filler blocks Material selection |
| β <b>&amp;</b> γ<br>In 1t LAr | <0.2                                          | Pulse shape discrimination<br>Material selection (for $\gamma$ )                                     |
| <b>Radon</b><br>In 1t LAr     | negligible                                    | Material selection, SAES getter,<br>cold charcoal radon trap<br>* High energy events, not in ROI     |
| <b>Surface</b> α<br>In 1t LAr | <0.2                                          | Material selection (acrylic), sanding of AV (1mm removal), fiducialization.                          |

So far, backgrounds appear to be close to target

# SNOLAB

SNOLAB is an underground science laboratory specializing in neutrino and dark matter physics. Situated 2 km below the surface in the Vale Creighton Mine located near Sudbury, ON.



Norite

Rock



- Single phase liquid argon approach: simple, scalable, inexpensive
- 3600 kg target (1000 kg fiducial) in sealed ultraclean Acrylic Vessel
- In-situ vacuum evaporated TPB wavelength shifter ( $\sim 10 \text{ m}^2$ )
- Bonded 50 cm long light guides + PE shielding provide neutron moderation
- 255 Hamamatsu R5912 HQE PMTs 8inch (32% QE, 75% coverage)
- Vessel is "resurfaced" in-situ to remove deposited Rn daughters after construction
- Detector immersed in 8 m water shield, instrumented with PMTs to veto muons
- Located 2 km underground at SNOLAB

# Fabrication and Assay of DEAP Acrylic

- Fabrication from pure MMA monomer at RPTAsia (Thailand), strict control of radon exposure for all steps, to < 10<sup>-20</sup> g/g<sup>210</sup>Pb (RPT was fabricator of the SNO Acrylic Vessel)
- Assay of production acrylic < 2.2x10<sup>-19</sup> g/g <sup>210</sup>Pb (Corina Nantais M.Sc. Thesis 2014, <0.2 bkg events/3 years)</li>





#### Monomer cast at RPT Asia, 2010

Thermoformed Panel at RPT Colorado



## Bonding light guides to the DEAP AV, underground at SNOLAB





Copper sleeve over PMT

2,500 person-weeks of assembly (students, faculty, PDFs, technicians, engineers)

## **Acrylic Vessel Resurfacer**

- Mechanical sander to clean inner surface •
- Components selected for low radon emanation ٠
- Remove 0.5-mm surface in situ with N<sub>2</sub> purge
- Cleans surface to bulk-level impurities • (order 100,000 cleaner than SNO vessel)



#### Completed Detector and Shield Tank



Completed Detector: Steel Shell, calibration tubes, muon veto in Shield Tank (fall 2015) Shield Tank and emergency vent lines, tank was filled with water Oct 2015

### **Acquisition system**

## Ar purificication Getter + Charcoal trap (Rn)

### Calibration source Deployment system

Wavelength shifter (TPB) evaporation Deployment system + Glove box

# TPB source/laserball deployment system



- Lower Tyvek skirt
- Deposition monitor
- Acrylic samples
- IR probe mount





Heating wire

Hanging attachment point



B. Broerman et al., JINST 11 (2016) C02058, detailed technical paper in preparation

# Water shield tank fill



Filled October 2015

## **Event Display**



Electronics and trigger system operational for over a year (CAEN v1720s):

- Commissioning, electronics calibration
- Optical calibration with internal optical fibres and deployed diffusing Laserball source



#### In-situ calibration of relative PMT efficiencies



## **PMT** Calibration



Calibrate to convert from PMT charge to number of photoelectrons (PE) Analysis operated routinely and automated

#### **Provides:**

mean Single PE charge for simple charge division calibration

 functional form of the SPE distribution used by more advanced SPE counting algorithms

Input for DAQ simulation

Detailed paper in preparation

## **Detector Filling**



<sup>39</sup>Ar beta decays at ~1 Bq/kg

select/reject with PSD

use as tool monitor response, fill level etc



# Aug 17<sup>th</sup> incident



- During 1st fill liquid Ar reached the neck level
- Clean Rn-scrubbed N2 leaked into LAr
  - Seal at the acrylic-steel interface got too cold and failed
  - 100 ppm level contamination
    - More than the purification system can handle
  - Remedy
    - Vent Argon
      - Completed by end of Aug.
    - Refill with fresh argon up to the edge of the neck
      - 2nd fill expected to be completed in Oct. 2016

Finalizing analysis of the data collected with partially full detector :

280 kg-yr total exposure (before cuts).

# **Position reconstruction**

- Main measure against surface backgrounds
- Two independent maximum likelihood fitters tuned to Monte Carlo
- Fiducial leakage probabilities of ~1.3e-3 (specification target) or better are achieved with current algorithms
- Spherical fiducial cut with an additional conical cut around the neck are considered

• Now benchmarking the Monte Carlo and the reconstruction algorithms against real detector events!





# Energy response

- First indications of good Light Yield, linearity of the energy scale and energy resolution.
- No sophisticated corrections applied yet. PE calibration is approximate and does not correct for PMT effects (including afterpulsing).



#### PRELIMINARY - Detector partially filled with LAr

# Next generation detector

50 tonne fiducial, 150 tonne full



- Can exhaust the available parameter space above the neutrino floor, probe cMSSM & NUHM
- Not sensitive to *pp* neutrino-electron elastic scattering, which limits ~10 tonne Xe detectors
- Complementary to LZ



Nuclear and Particle Physics Proceedings 273-275 (2016) 340-346

- Technology can be scaled to very large target masses, > 100 tonnes or 10<sup>-48</sup> cm<sup>2</sup> sensitivity
- Better position reconstruction => relaxed targets on surface contamination
- Large detector will require Underground Argon
- Developing a large general purpose facility for noble liquid detector R&D at Carleton University

# Summary

- DEAP-3600 has commenced operations!
  - DEAP was initially full mid-August (but seal failure)
  - have refilled and commenced 'nominal' data collection
  - have substantial exposure from 'partial fill' data set
  - calibrating and understanding detector response well underway
  - no surprises so far in terms of backgrounds
  - analyzing partial fill data potentially with aim to publish first result



## **DEAP Collaboration: 65 researchers in Canada, UK, and Mexico**



# DEAP-1 and the PSD model





- PSD of ~10<sup>-10</sup> required in DEAP-3600 to beat down backgrounds from <sup>39</sup>Ar (beta emitter) present at 1 Bq/kg rate.
- Measured with a tagged Na-22 gamma source using DEAP-1 at SNOLAB.
- Collected 1.23e+8 events. Leakage <2.7e-8 (90% C.L.)</li>
- Data well described with analytic model and toy simulation
- Projection for DEAP-3600 indicates PSD of 10<sup>-10</sup>

## Key parameters monitored during the cooldown



Also monitoring: mean SPE charge, afterpulsing distribution, ...

Detailed paper in preparation.

## Gaseous Ar data

- After initial "vacuum" data taking phase detector filled with clean Ar gas
- Collected data in stable temperature and pressure conditions as well as during cooldown
- Used Ar39 spectrum for early light yield estimates, by comparing full detector Monte Carlo with the data



# **Triplet lifetime stability**

- Triplet lifetime and light yield stable over many days of operation in a closed loop, <u>without re-purification</u>
- (Process systems can be run also in re-circulation/purification mode)





## Acrylic attenuation measurements

 Proposed a method based on UV-Vis spectrometer and transmission measurements of samples of different length



#### Magnetic field compensation 2.4 2.2 2 PMT efficiency depends on B field Efficiency (a.u.) Using a combination of passive 1.8 **FINEMET** shields 1.6 And a simple set 4 compensation coils 1.4 (to cancel the Z component) Finemet, 1 layer 1.2 Bare PMT B $|B_z|$ 1 1.5 -1.5-0.50.5 0 7.5 Compensating field (units of B<sub>Earth</sub>) Vertical position [m] 5 0.5 G 2.5 0 -2.5 -5 0.0 G -7.5 -2 2 -4 -2 0 4 0 2 -4 Horizontal position [m]