Status of COSINE-100 Experiment

Jay Hyun Jo on behalf of COSINE-100 Collaboration

Ale University

DBD2016 November 10, 2016

- Introduction: COSINE-100 Dark Matter Experiment
- COSINE-100 Hardware Construction
- Data Taking and Monitoring
- Initial Performance
- Conclusion and Outlook

- Introduction: COSINE-100 Dark Matter Experiment
- COSINE-100 Hardware Construction
- Data Taking and Monitoring
- Initial Performance
- Conclusion and Outlook

Current Dark Matter Search Status

LUX Collaboration, arXiv:1512.03506

- Liquid Xenon detectors provide currently the best sensitivity to spin-independent WIMP scattering
- Signal excesses in other experiments in tension under standard interaction models

Annual Modulation and DAMA

- Galactic dark matter is believed to be distributed in a halo
- Earth's motion around the sun causes annual modulation of dark matter (Peak @ June 2)
- + 9.3 σ modulation observed by DAMA/NaI, DAMA/LIBRA
 - Is it dark matter or something else?
 - More exclusion limits *cannot* answer this question

• DM-Ice:

17 kg prototype detectors @ South Pole

• KIMS-Nal:

Various Nal crystal R&D in Csl array @ Yangyang

• ANAIS:

112.5 kg total crystal mass @ Canfranc

• SABRE:

Ultra-pure crystal (30-50 kg) in liquid scintillator veto @ LNGS & Stawell

• PICO-LON:

Low-background crystal R&D setup @ Kamioka

COSINE-100 Dark Matter Experiment

- A joint effort between
 DM-Ice and KIMS
 collaboration
- 14 institutes with ~50 members
- Located at Yangyang underground laboratory (Y2L), South Korea, with ~700 m rock overburden

- Introduction: COSINE-100 Dark Matter Experiment
- COSINE-100 Hardware Construction
- Data Taking and Monitoring
- Initial Performance
- Conclusion and Outlook

COSINE-100 Shielding Structure

Plastic Scintillators

COSINE-100 Construction Timeline

Dec. 2015

Jan. 2016

Feb. 2016

Apr. 2016

May. 2016

Sep. 2016

Yale

Jay Hyun Jo

Preliminary

	Mass (kg)	Powder Type	40 K (ppb)	²³⁸ U (ppt)	232 Th (ppt)	210 Po (mBq/kg)
Crystal 1	8.26	Powder B	$43.4{\pm}13.7$	< 0.02	$1.31{\pm}0.35$	$3.20{\pm}0.04$
Crystal 2	9.15	Powder C	82.7 ± 12.1	< 0.12	$<\!0.63$	$2.06{\pm}0.03$
Crystal 3	9.16	WIMPScint-II	$41.1 {\pm} 6.8$	< 0.04	$0.44{\pm}0.19$	$0.76{\pm}0.02$
Crystal 4	18.01	WIMPScint-II	$39.5{\pm}8.3$		< 0.3	$0.74{\pm}0.01$
Crystal 5	18.28	Powder C	$86.8{\pm}10.8$		$2.35{\pm}0.31$	$2.06{\pm}0.02$
Crystal 6	12.5	WIMPScint-III	$12.2 {\pm} 4.5$	< 0.018	$0.56{\pm}0.19$	$1.52{\pm}0.02$
Crystal 7	12.5	WIMPScint-III	$18.8{\pm}5.3$		$<\!0.6$	$1.54{\pm}0.02$
Crystal 8	18.28	Powder C	56.15 ± 8.1		<1.4	$2.05{\pm}0.02$
DAMA			<20	0.7 - 10	0.5 - 7.5	< 0.5

- 8 crystals with total mass of ~106 kg
- Preliminary background values estimated both at R&D and COSINE setup
- Average light yield ~15 p.e./keV

Crystal-PMT Assembly

- OFE Cu-encapsulated Nal crystal is attached with two 3-inch PMTs
- PMT: R12669 from Hamamatsu, 35% Quantum Efficiency at 420 nm
- Outer surface of crystal and PMT cap is wrapped with Vikuiti reflective films

Crystal Installation

Plastic Scintillator

- Purpose: To tag cosmic ray muon events
- 37 panels of plastic scintillator (EJ-200), 3 cm thick
- Attached with light guides and 2-inch PMT, wrapped with diffuse reflector

Liquid Scintillator

- Purpose: Tag and veto 3 keV⁴⁰K (and 0.9 keV²²Na), also works as shielding for external backgrounds and neutron
- LAB-based liquid scintillator
- ~2000 liters filled inside of Cu box
- Shown to contain less than 7 ppt of ²³⁸U and 4 ppt of ²³²Th
- Expected background contribution less than 0.01 counts/day/keV/kg

Data Acquisition System

- Crystal data taken with FADC 500 Mega samples/sec waveform digitizer
- M64ADC data taken with M64ADC 64 MHz waveform digitizer
 - Plastic and liquid scintillator data

- Introduction: COSINE-100 Dark Matter Experiment
- COSINE-100 Hardware Construction
- Data Taking and Monitoring
- Initial Performance
- Conclusion and Outlook

Crystal PMT Waveforms

- The same events read in two channels: Anode and Dynode
 - **Anode** signal with waveform sensitivity at single-photon level: Primary channel for dark matter search
 - Dynode signal for high energy events: helps in understanding better the internal backgrounds in the crystals

Calibration/Light yield calculation

²⁴¹Am source (60 keV gamma) used to calibrate PMTs

- Gain is matched to have 60 keV peak at the mid-range of FADC dynamic range
- Single Photoelectron spectrum were fitted to calculate PMT light yield

- Introduction: COSINE-100 Dark Matter Experiment
- COSINE-100 Hardware Construction
- Data Taking and Monitoring
- Initial Performance
- Conclusion and Outlook

Event Selection: Fast Event Rejection

 Looking at charge ratio between rising edge and falling edge of a pulse gives good noise separation power

Event Selection: Asymmetry between PMTs & Charge/Peak

- Additional noise reduction cuts have been developed:
 - Charge asymmetry between 2 PMTs in each crystal
 - Charge/peak: Average charge per SPE

Crystal-LS Coincidence Events

- ⁴⁰K emits 1460 keV gamma with 3 keV Auger electron energy deposition in Nal crystal
- Tagging 1460 keV events with LS enables to veto 3 keV background events

Crystal-LS Coincidence Events

• ⁴⁰K emits 1460 keV gamma with 3 keV energy deposition in Nal crystal

- Tagging 1460 keV events with LS enables to veto 3 keV background events
- With event selection, 3 keV peak

Low Energy Spectrum

- 10 days of data, current set of event selection applied (not final!)
- Depending on crystal, background level ~3 dru at the region of interest
- Cosmogenic peaks remain in certain crystals
- There are still room for improvements

Pulse Shape Discrimination for Alpha

- Pulse Shape Discrimination technique works well for alpha separation
- Using charge-weighted mean time
- With separated alpha events, estimation of ²¹⁰Po background can be performed
 - 0.5~3 mBq/kg for COSINE-100 crystals

High Energy Spectrum

Crystal 6

Preliminary

- Gamma spectrum shows pronounce background peaks including 1460 keV from $^{\rm 40}{\rm K}$
- Dynamic range for high energy signals is > 5 MeV

Nal Crystal Simulation

- Work in progress, Geant4 framework
- Using Nal energy spectrum in R&D setup for the first step
- Surface ²¹⁰Pb is suspected to be the dominant background, followed by ⁴⁰K internal to crystal

Projected Sensitivity of COSINE-100

• 2-4 dru flat background is assumed

 2 years of data with 1 keV analysis threshold will give comparable sensitivity with DAMA's 90% C.L allowed region

- Introduction: COSINE-100 Dark Matter Experiment
- COSINE-100 Hardware Construction
- Data Taking and Monitoring
- Initial Performance
- Conclusion and Outlook

What Next?

- To have stronger exclusion limit, there are 2 things to be done: lowering analysis energy threshold, and background reduction
- Lowering energy threshold
 - More sophisticated event selection
 - Good simulation
- Background reduction
 - Ultra-low background crystal growing
 - Low background PMTs
 - Low-temperature detectors

- COSINE-100 is a joint effort between DM-Ice and KIMS collaborations to search for dark matter interaction in NaI(TI) crystals
- COSINE-100 consists of 8 crystals with total mass of 106 kg, 2000 liters of LAB-based liquid scintillator to tag low energy backgrounds, and 37 plastic scintillators to tag muon events
- Initial performance of COSINE-100 is promising, yet there is still room for improvements
- Physics run has started on September 2016
- COSINE-100 has the capacity to directly test DAMA within time period of ~2 years...Stay tuned!

Backups

Annual Modulation of Dark Matter

- Galactic dark matter is believed to be distributed in a halo
- Relative velocity of the detector with respect to the dark matter depends on the time of the year, shows a sinusoidal dependence with time; Annual Modulation

DM-lce17

Yale

12 CsI(TI) 8.7 kg crystals (103 kg total) Background level achieved at ~3 dru (counts/keV/kg/day) at 3 keV

Yale

Jay Hyun Jo

Cleaning of Xtals and Parts

Cleaning in an ultrasonic bath with radiac wash and high grade ethanol.

COSINE-100 Crystals

LS for COSINE-100

Linear alkylbenzene (LAB) : Good optical/radioactive properties 2,5-Diphenyloxazole (PPO) : fluor, scintillator/wavelength shifter p-bis-(o-methylstyryl)-benzene (bis-MSB) : wavelength shifter

Purification Setup

(Humidity removal)

3000 liters of liquid scintillators

This background of the liquid scintillator contributes negligible amount to the crystal (<0.01 dru)

Ready to be filled

Examples of Signal Events

Low Energy Spectrum

Preliminary

- 10 days of data, current set of event selection applied (not final!)
- Depending on crystal, background level ~3 dru at the region of interest •
- Cosmogenic peaks remain in certain crystals •
- There are still room for improvements

Low Energy Spectrum (< 20 keV)

HE spectrum

Average charge/SPE cut

47

Eur. Phys. J. C (2016) 76:185

