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Why Neutrinos?



There are a lot of 

neutrinos out there



Einstein’s Dream
• Einstein dreamed to come up with a unified description of 

vast phenomena in Nature



Rare effects from  
high energies

• Effects of high-energy physics mostly 
disappear by power suppression

• can be classified systematically
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unique role of mν
• Lowest order effect of physics at short 

distances
• tiny effect: (mν/Eν)2≈(0.1eV/GeV)2≈10–20!
• interferometry (e.g. Michaelson-Morley)
• need a coherent source
• need a long baseline
• need interference (i.e. large mixing angle)

• Nature was kind to provide them all!
• neutrino interferometry (a.k.a. oscillation) a 

unique tool to study physics at very high E
• probing up to Λ≈1014 GeV
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Neutrinos and relativity
Faster than the speed of light
What does an experiment that seems to contradict Einstein’s theory of relativity
really mean?

IN 1887 physicists were feeling
pretty smug about their subject.
They thought they understood
reality well, and that the future
would just be one of ever more
precise measurements. They could
not have been more wrong. The
next three decades turned physics
on its head, with the discovery of
electrons, atomic nuclei,
radioactivity, quantum theory and
the theory of relativity. But the
grit in the pearl for all this was a
strange observation made that year by two researchers called Albert Michelson and Edward
Morley that the speed of light was constant, no matter how fast the observer was travelling.

Some physicists are wondering whether their subject has just had another Michelson-Morley
moment. On September 23rd researchers at CERN, Europe’s main physics laboratory,
announced that subatomic particles called neutrinos had apparently sped from the lab’s
headquarters near Geneva, through the Earth’s crust, to an underground detector 730km (450
miles) away around 60-billionths of a second faster than light would take to cover the same
distance (see article (http://www.economist.com/node/21530946) ). The difference in speed is
tiny, but the implications are huge.

As every schoolboy (and journalist with access to Wikipedia) knows, this flies in the face of
special relativity, a theory devised by Albert Einstein precisely to explain the observation of
Michelson and Morley. Special relativity, which physicists thought they had tested almost to
destruction, and found not wanting, states that as objects speed up, time slows down. Time
stops altogether on reaching the 299,792,458 metres per second at which light zaps through a
vacuum. Go any faster and you would be moving backwards in time.

803Like 0
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• mu/e ratio

• problem w/ Water Ch?

• neutron BG?

• particle ID?

• proton decay?
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Atmospheric neutrinos
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Typical Theorist’s View 
ca. 1990

• Solar Neutrino Problem must be solved by 
Small Angle MSW solution because it is so 
beautiful

• Important scale for oscillation is Δm2≈10-100 
eV2 because it is cosmologically relevant

• θ23 must be about θ23≈Vcb≈0.04
• atmospheric neutrino anomaly must go away 

because it requires large mixing angle

Wrong!

Wrong!
Wrong!

Wrong!



KamLAND 
neutrinos do oscillate!

≈Proper time τ

L0=180 km



Lot of effort since ‘60s 

Now we know Neutrinos have 
tiny but finite mass
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Neutrino Mass 
Beyond the Standard 

Model



Questions
• mass hierarchy?
• mass scale?
• which octant?
• Is θ23 maximal?
• CP violation?
• Dirac or Majorana?
• sterile neutrinos?
• non-std interactions?
• origin of neutrino mass?
• seesaw?  which type?
• leptogenesis?
• dark matter?

m2
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Neutrinos have mass
• They have mass.  Can’t go at speed of light. 

•What is this right-handed particle? 

• New particle: right-handed neutrino (Dirac) 
• Old anti-particle: right-handed anti-neutrino (Majorana)



Two ways to go

(1) Dirac Neutrinos:

• There are new particles, right-

handed neutrinos, after all 
• Why haven’t we seen them? 
• Right-handed neutrino must 

be very very weakly coupled 
• Why?



Extra Dimension
• All charged particles are on a 3-brane

• Right-handed neutrinos SM gauge singlet

	 ⇒ Can propagate in the “bulk”

• Makes neutrino mass small

	 (Arkani-Hamed, Dimopoulos, Dvali, March-Russell;                          

Grossman, Neubert; Barbieri, Strumia)

• Or SUSY breaking

	 (Arkani-Hamed, Hall, HM, Smith, Weiner; Arkani-Hamed, Kaplan, HM, 

Nomura) 

• Or very low-scale physics??



Two ways to go

(2) Majorana Neutrinos:

• There are no new light 

particles 
• What if I pass a neutrino and 

look back? 
• Must be right-handed anti-

neutrinos 
• No fundamental distinction 

between neutrinos and anti-
neutrinos!



Hitoshi Murayama, Benasque

Seesaw Mechanism

• Why is neutrino mass so small?
• Need right-handed neutrinos to generate 

neutrino mass
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BBN & CMB
• At T>MeV, the soup of 

e+, e–, ν, ν
• small amount of p, n
• they start to fuse, 

forming light elements
• abundance of light 

elements depends on 
amount of baryon

• baryon asymmetry 
consistent with T~MeV 
and T~0.3eV

20. Big-Bang nucleosynthesis 3
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Figure 20.1: The abundances of 4He, D, 3He, and 7Li as predicted by the standard
model of big-bang nucleosynthesis — the bands show the 95% CL range. Boxes
indicate the observed light element abundances (smaller boxes: ±2σ statistical
errors; larger boxes: ±2σ statistical and systematic errors). The narrow vertical
band indicates the CMB measure of the cosmic baryon density, while the wider
band indicates the BBN concordance range (both at 95% CL).

In recent years, high-resolution spectra have revealed the presence of D in high-
redshift, low-metallicity quasar absorption systems (QAS), via its isotope-shifted Lyman-α
absorption [23–28]. It is believed that there are no astrophysical sources of deuterium [29],

July 24, 2008 18:04
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Early Universe

1,000,000,002 1,000,000,000

matter anti-matter



Current Universe

2

We won!  But why?

us

matter anti-matter



Beginning of Universe

1,000,000,001 1,000,000,001

matter anti-matter



fraction of second later

1,000,000,002 1,000,000,000

matter anti-matter

1

turned an anti-matter out of a billion to matter



Universe Now

2

This must be how we survived the Big Bang!

us

matter anti-matter
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CP Violation
• Is anti-matter the exact 

mirror of matter?

1964 discovery of CP violation

• But only one system, hard to 

tell what is going on.

2001, 2002 Two new CP-
violating phenomena

• But CP violation observed 

so far is too small by a 
factor of 10-16 to explain the 
absence of anti-matter


• doesn’t look like quarks are 
important here

2008 Nobel Prize



Anomaly!

• W and Z bosons 
massless at high 
temperature

• W field fluctuates just 
like in thermal plasma

• solve Dirac equation in 
the presence of the 
fluctuating W field

Δq=Δq=Δq=ΔL



Leptogenesis
• You generate Lepton Asymmetry first.

• Generate L from the direct CP violation in right-

handed neutrino decay

• Like ε’/ε!


• L gets converted to B via EW anomaly

	 ⇒ More matter than anti-matter	 	                   
⇒ Neutrinos saved us from complete annihilation

Fukugita Yanagida

Γ(N1→νi H) − Γ(N1→ν i H )∝ Im(h1 j h1khlk* hlj*)
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Excitement
• CP violation in neutrino sector may be 

observable with conventional technique
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sinδCP=0 exclusion

δCP 1σ error

• Exclusion of sinδCP=0 

• 8σ for δ=-90° (T2K best fit) 

• 80% coverage of δ 
parameter space for CPV 
discovery w/ >3σ 

• Test of CPV origin 

• δCP precision measurement 

• 22° for δ=-90° 

• 7° for δ=0°
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DUNE/LBNF





anarchy θ23

θ12

θ13

Kolmogorov-Smirnov test (de Gouvêa, HM) 
nature has 47% chance to choose this kind of numbers
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Xiaochuan Lu, Murayama

random mass matrices

no direct connection to CP violation in oscillation
but a plausibility test

N1(+2), N2(+1), N3(0)

L1(0), L2(0), L3(0)

✏(�1) ⇡ 0.1
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Can anti-matter turn into 
matter?

• proton is positively charged, 
anti-proton negatively


• can never turn into each other

• But neutrinos or anti-neutrinos 

do not have electric charge

• neutrinoless double beta 

decay: nn→ppe–e–

• can we look for anti-matter 

turning into matter?



Not easy
• anarchy prefers normal hierarchy
• quite difficult to reach the sensitivity levels
• but if LBL discovers inverted hierarchy, it is 

in a much better shape!



14 14. Neutrino masses, mixing, and oscillations

neutrinos are predicted to be of Majorana nature by the see-saw mechanism of neutrino
mass generation [3]. The observed patterns of neutrino mixing and of neutrino mass
squared differences can be related to Majorana massive neutrinos and the existence of an
approximate flavour symmetry in the lepton sector (see, e.g., Ref. 96). Determining the
nature of massive neutrinos νj is one of the fundamental and most challenging problems
in the future studies of neutrino mixing.

0.0001 0.001 0.01 0.1 1

m      [eV]

10-4

0.001
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0.1

1
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>
| [

eV
]

NH
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QD
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KamLAND-Zen

GERDA-II

CUORE+CUORICINO

Figure 14.1: The effective Majorana mass |<m>| (including a 2σ uncertainty),
as a function of min(mj). The figure is obtained using the best fit values and
the 1σ ranges of allowed values of ∆m2

21, sin2 θ12, sin2 θ13 and |∆m2
31(32)| from

Ref. 58 (see Table 14.1), propagated to |<m>| and then taking a 2σ uncertainty.
The phases α21 and (α31 − 2δ) are varied in the interval [0,2π]. The predictions
for the NH, IH and QD spectra as well as the GERDA-II, KamLAND-Zen and the
combined CUORE+CUORICINO limits, Eq. (14.20) and Eq. (14.21), are indicated.
The black lines determine the ranges of values of |<m>| for the different pairs of
CP conserving values of α21 and (α31 − 2δ): (0, 0), (0, π), (π, 0) and (π, π). The red
regions correspond to at least one of the phases α21 and (α31 − 2δ) having a CP
violating value, while the blue and green areas correspond to α21 and (α31 − 2δ)
possessing CP conserving values. (Update by S. Pascoli of a figure from Ref. 112.)

The Majorana nature of massive neutrinos νj manifests itself in the existence of
processes in which the total lepton charge L changes by two units: K+ → π− + µ+ + µ+,
µ− + (A, Z) → µ+ + (A, Z − 2), etc. Extensive studies have shown that the only

June 5, 2018 19:50

Planck 
Σmνi<0.2eV





cluster of galaxies

Abell 2218
2.1B lyrs



assumption

• a random density 
fluctuations ~O(10–5) 
more-or-less scale 
invariant P(k) ∝ kns–1

• starts acoustic 
oscillation, amplified by 
gravitational attraction

• “knows” about 
everything between 
0<z<1300

δT/T = alm Ylm

(2l+1)clm = Σm alm*alm

Planck Collaboration: Cosmological parameters

Fig. 10. Planck TT power spectrum. The points in the upper panel show the maximum-likelihood estimates of the primary CMB
spectrum computed as described in the text for the best-fit foreground and nuisance parameters of the Planck+WP+highL fit listed
in Table 5. The red line shows the best-fit base ⇤CDM spectrum. The lower panel shows the residuals with respect to the theoretical
model. The error bars are computed from the full covariance matrix, appropriately weighted across each band (see Eqs. 36a and
36b), and include beam uncertainties and uncertainties in the foreground model parameters.

Fig. 11. Planck T E (left) and EE spectra (right) computed as described in the text. The red lines show the polarization spectra from
the base ⇤CDM Planck+WP+highL model, which is fitted to the TT data only.
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Subaru
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HET

Keck

SALT

LBT

VLT

Gemini telescopes ≥8m



Dark matter map (2D)
 ~30 sq. degs

Galaxy map (2D)

Dark matter map (3D)

galaxy map (3D)

Oguri et al. arXiv:1705.06792
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Largest 3D map of dark matter
• Galaxy shape catalog now fixed (Mandelbaum, Miyatake + 17) 
• Galaxy shapes + Photoz of gals → 3D mass & galaxy maps 
• Strong correlations between DM and galaxy distributions



Search for MACHOs
(Massive Compact Halo Objects)

Large Magellanic Cloud

Not enough of them!

Dim Stars?
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• Clumps to form structure

• imagine 

• “Bohr radius”: 

• too small m ⇒ won’t “fit” in a galaxy!

• m >10−22 eV “uncertainty principle” bound 
(modified from Hu, Barkana, Gruzinov, astro-ph/0003365)

V = GN
Mm

r
rB =

�2

GNMm2

Mass Limits 
“Uncertainty Principle”
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sterile neutrinos

• keV-scale sterile neutrinos could be dark 
matter

• >0.4keV because of the Pauli exclusion 
principle

• <50keV to avoid too rapid decay

• created by oscillation

• typically very small mixing angles

• requires non-zero asymmetry



Alexander Merle

2.*ProducLon*Mechanisms*
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[Canem*et*al.:*Phys.*Rev.*D87*(2013)*093006]*

DW'line' N1''''''''''ν+γ'



2.*ProducLon*Mechanisms*
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10 7 Interpretation
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Figure 5: Upper limits on the DM-nucleon cross section, at 90% CL, plotted against DM particle
mass and compared with previously published results. Left: limits for the vector and scalar
operators from the previous CMS analysis [10], together with results from the CoGeNT [60],
SIMPLE [61], COUPP [62], CDMS [63, 64], SuperCDMS [65], XENON100 [66], and LUX [67]
collaborations. The solid and hatched yellow contours show the 68% and 90% CL contours
respectively for a possible signal from CDMS [68]. Right: limits for the axial-vector operator
from the previous CMS analysis [10], together with results from the SIMPLE [61], COUPP [62],
Super-K [69], and IceCube [70] collaborations.

Figure 6: Observed limits on the mediator mass divided by coupling, M/pgcgq, as a function
of the mass of the mediator, M, assuming vector interactions and a dark matter mass of 50 GeV
(blue, filled) and 500 GeV (red, hatched). The width, G, of the mediator is varied between M/3
and M/8p. The dashed lines show contours of constant coupling p

gcgq.

K = sNLO/sLO of 1.4 for d = {2, 3}, 1.3 for d = {4, 5}, and 1.2 for d = 6 [71]. Figure 7 shows 95%
CL limits at LO, compared to published results from ATLAS, LEP, and the Tevatron. Table 7
shows the expected and observed limits at LO and NLO for the ADD model.

Figure 8 shows the expected and observed 95% CL limits on the cross-sections for scalar un-

XENO
N1t

γ from dSph

direct detection

LHC

Exciting!
e+
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Figure 5: Upper limits on the DM-nucleon cross section, at 90% CL, plotted against DM particle
mass and compared with previously published results. Left: limits for the vector and scalar
operators from the previous CMS analysis [10], together with results from the CoGeNT [60],
SIMPLE [61], COUPP [62], CDMS [63, 64], SuperCDMS [65], XENON100 [66], and LUX [67]
collaborations. The solid and hatched yellow contours show the 68% and 90% CL contours
respectively for a possible signal from CDMS [68]. Right: limits for the axial-vector operator
from the previous CMS analysis [10], together with results from the SIMPLE [61], COUPP [62],
Super-K [69], and IceCube [70] collaborations.

Figure 6: Observed limits on the mediator mass divided by coupling, M/pgcgq, as a function
of the mass of the mediator, M, assuming vector interactions and a dark matter mass of 50 GeV
(blue, filled) and 500 GeV (red, hatched). The width, G, of the mediator is varied between M/3
and M/8p. The dashed lines show contours of constant coupling p

gcgq.

K = sNLO/sLO of 1.4 for d = {2, 3}, 1.3 for d = {4, 5}, and 1.2 for d = 6 [71]. Figure 7 shows 95%
CL limits at LO, compared to published results from ATLAS, LEP, and the Tevatron. Table 7
shows the expected and observed limits at LO and NLO for the ADD model.

Figure 8 shows the expected and observed 95% CL limits on the cross-sections for scalar un-
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neutrinos & dark matter
• Line is drawn for convenience of funding 

agencies in a ridiculous way

• e.g., underground expts supported by US DOE

Energy Nuclear HEP
~1-100 GeV accelerator ν
~5-12 MeV solar ν
~2-8 MeV reactor ν reactor ν

~10-100 keV dark matter



Questions
• mass hierarchy?
• mass scale?
• which octant?
• Is θ23 maximal?
• CP violation?
• Dirac or Majorana?
• sterile neutrinos?
• non-std interactions?
• origin of neutrino mass?
• seesaw?  which type?
• leptogenesis?
• dark matter?
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