

Search for Neutrinoless Double Beta Decay with GERDA

Grzegorz Zuzel

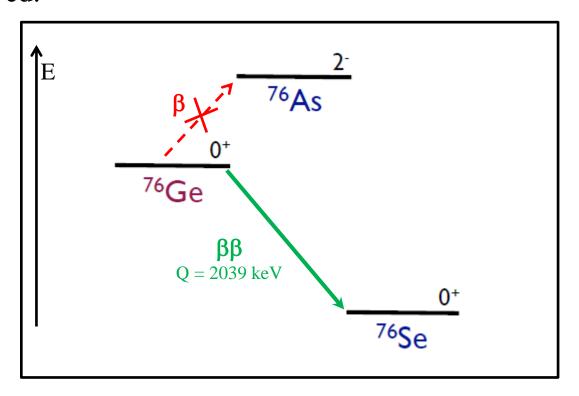
on behalf of the GERDA Collaboration

Outline

- Double beta decay
- Design and goals of GERDA
- Background reduction strategy
- GERDA latest results
- Summary

Double Beta Decay

 $\beta\beta$ decay


GERDA design

Bkg reduction

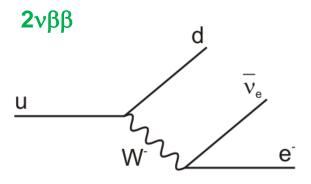
Latest results

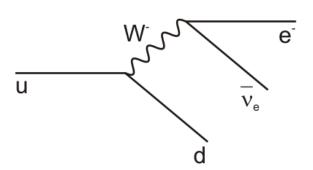
Summary

In a number of even-even nuclei, β decay due to energy/angular momentum balance is forbidden, while double beta decay from a nucleus (A,Z) to (A, Z+2) is energetically allowed.

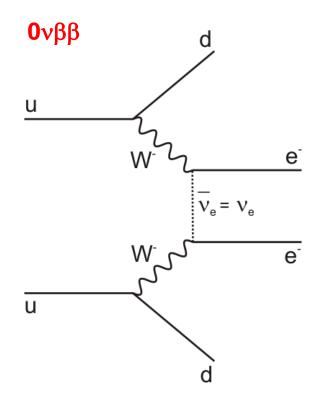
⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr ¹⁰⁰Mo, ¹¹⁶Cd ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd

Double Beta Decay Modes




 $\beta\beta$ decay

GERDA design


Bkg reduction

Latest results

$$(A,Z) \rightarrow (A, Z+2) + 2e^{-} + 2\bar{\nu}_{e}$$

 $\Delta L = 0$
 $T_{1/2} \sim 10^{18} - 10^{24} \text{ yr}$

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-}$$

$$\Delta L = 2$$

$$T_{1/2}^{exp} > \sim 10^{26} yr$$

Background Issue

ββ decay

GERDA design

Bkg reduction

Latest results

Summary

No background

$$T_{1/2}(90\% \ CL) > \frac{\ln 2}{1.64} \frac{N_A}{A} \epsilon \cdot \alpha \cdot M \cdot T$$

Background

$$T_{1/2}(90\% CL) > \frac{\ln 2}{1.64} \frac{N_A}{A} \epsilon \cdot a \sqrt{\frac{M \cdot T}{B \cdot \Delta E}}$$

$$\frac{1}{T_{1/2}} = G(Q, Z) \cdot |M_{nuc}|^2 \cdot \langle m_{ee} \rangle^2$$

$$< m_{ee} > \sim rac{1}{\sqrt{T_{1/2}}} \sim \sqrt[4]{rac{B \cdot \Delta E}{M \cdot T}}$$

$$(M \cdot T) \uparrow x \ 100 \rightarrow T_{1/2} \uparrow 10 \rightarrow \langle m_{ee} \rangle \downarrow x \sim 3$$

GERDA

ββ decay

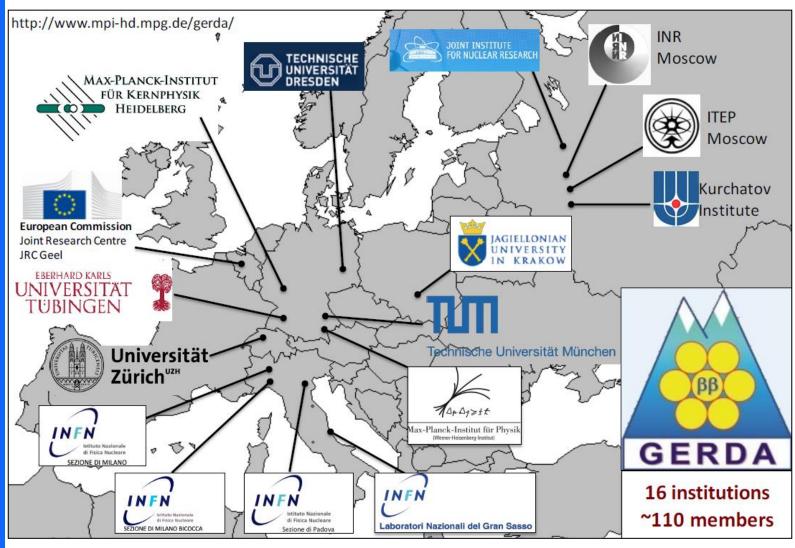
GERDA design

Bkg reduction

Latest results

- GERDA (<u>GER</u>manium <u>Detector Array</u>) has been designed to investigate neutrinoless double beta decay of 76 Ge ($Q_{BB} = 2039 \text{ keV}$)
 - Ge mono-crystals are very pure
 - Ge detectors have excellent energy resolution
 - Detector = source ($\varepsilon \approx 1$)
 - Enrichment required (7.4 % \rightarrow 86 %)
 - Bare HP enrGe detectors immersed in LAr
- Background (index) around $Q_{\beta\beta}$: $10^{-2}-10^{-3}$ cts/(keV×kg×yr); 10-100 times lower compared to previous experiments (HdM/IGEX)

The GERDA Collaboration



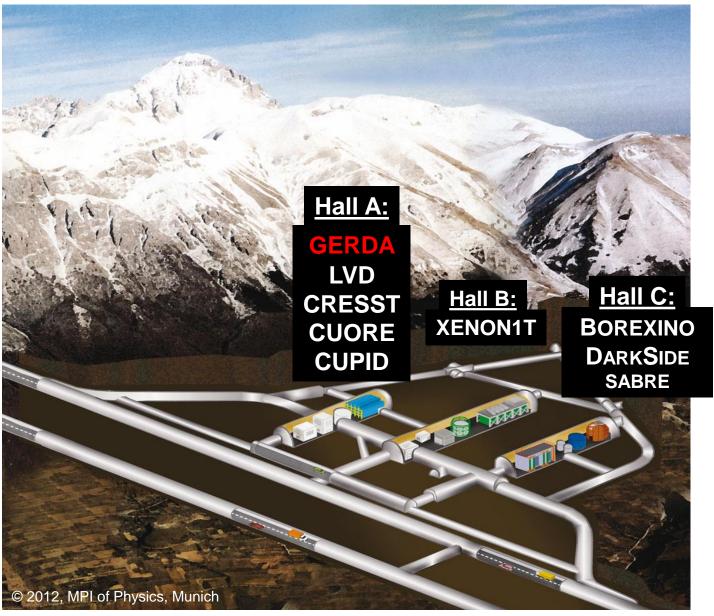
ββ decay

GERDA design

Bkg reduction

Latest results

GERDA at LNGS


ββ decay

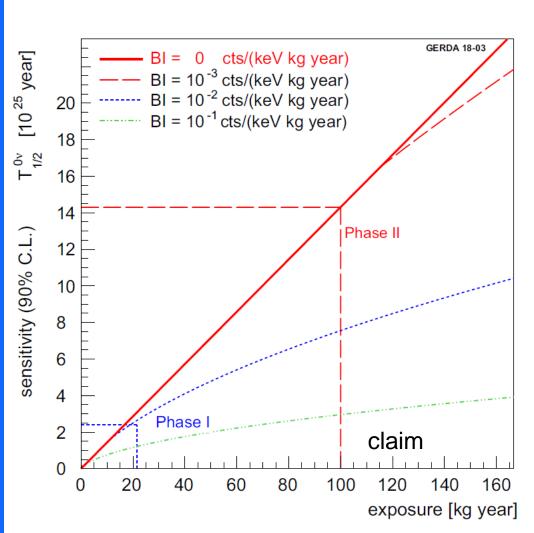
GERDA design

Bkg reduction

Latest results

Summary

GERDA Sensitivity


ββ decay

GERDA design

Bkg reduction

Latest results

Summary

LEGEND:

⁷⁶Ge mass ~1 t BI ≈ 10^{-5} cts / (keV×kg×yr) Sensitivity: ~1×10²⁸ yr <m_{ee}> ~ 10 meV

Phase II:

Add new enr. BEGe detectors (+20 kg, 35 kg tot.) BI $\approx 10^{-3}$ cts / (keV×kg×yr) Sensitivity after 100 kg×yr

Phase I:

Use refurbished HdM & IGEX (18 kg) BI $\approx 10^{-2}$ cts / (keV×kg×yr) Sensitivity after 20 kg×yr

GERDA History

ββ decay

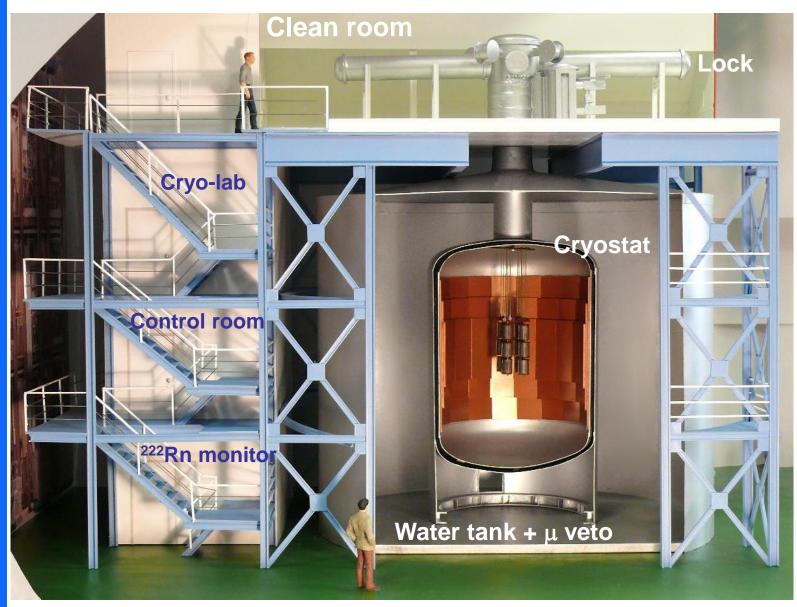
GERDA design

Bkg reduction

Latest results

- 2004 2005: The collaboration was formed
- 2005 2010: GERDA funded, designed and constructed in LNGS Hall A
- 2010 2011: Phase I commissioning
- June 2011: Deployment of the first string of ^{enr}Ge (3 detectors, 6.7 kg)
- ol.11.2011: Start data taking with all 8 Phase I ^{enr}Ge crystals (17.8 kg) and 1 ^{nat}Ge crystal (from GTF)
- June 2012 5 Phase II enr. BEGe detectors inserted into the cryostat
- Phase I data: 09.11.11 09.05.13 (21.6 kg×yr acquired)
- 2013 2015: upgrade to Phase II
- December 2015: Phase II data taking starts
- April May 2018: Phase II upgrade

GERDA Phase I


ββ decay

GERDA design

Bkg reduction

Latest results

Summary

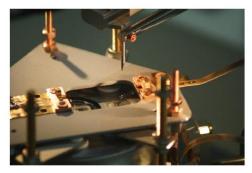
GERDA Phase II Setup

ββ decay

GERDA design

Bkg reduction

Latest results


Summary

New low-mass detector holders (Si, Cu, PTFE)

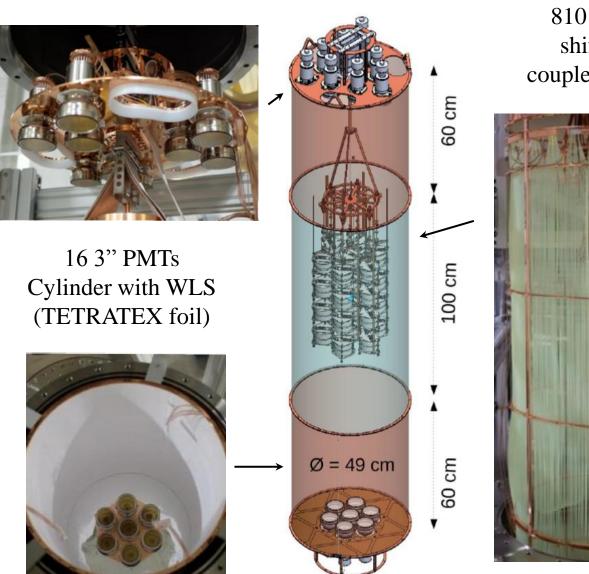
New thick-window BEGe detectors

New signal and HV contacting by wire bonding flat ribbon cables

New TPB coated nylon minishrouds to reduce attraction of ⁴²K ions (from decays of ⁴²Ar) to n⁺ surface

TBP = tetraphenyl butadiene

Hybrid LAr veto: PMTs + Fibers


ββ decay

GERDA design

Bkg reduction

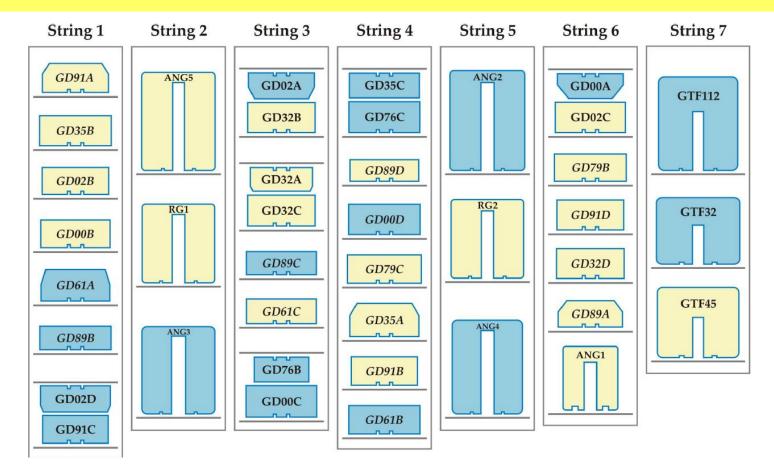
Latest results

Summary

810 wavelength shifting fibers coupled to 90 SiPMs

International Workshop on "Double Beta Decay and Underground Science" DBD18, October 21-23, Hawaii, USA

GERDA Phase II Array


ββ decay

GERDA design

Bkg reduction

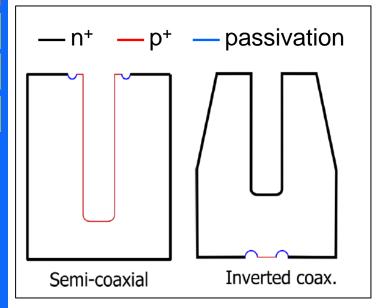
Latest results

Summary

GERDA Phase II (Dec 2015 -)

- 30 enriched BEGe (20.0 kg), 7 enriched coax (15.8 kg), 3 natural coax (7.6 kg)
- LAr instrumentation: 90 (SiPMs) + 16 (PMTs) channels
- BI ~ 10^{-3} cts/(keV×kg×yr)

Upgrade of Phase II


ββ decay

GERDA design

Bkg reduction

Latest results

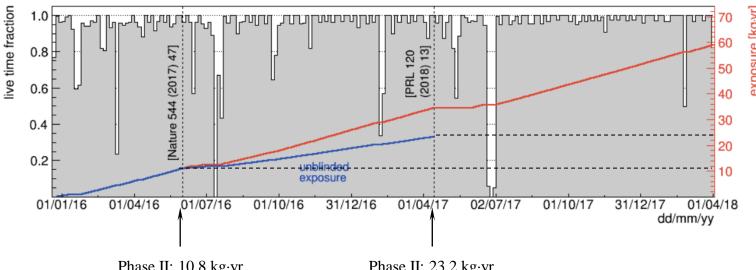
- Natural coax replaced with 9 kg (5 detectors) enriched inverted coax type
- New LAr instrumentation: installation of denser fibre curtain and middle string curtain
- 3 Ge channels recovered
- Few detectors etched to reduce their leakage current
- Some cables replaced with lower activity version

Accumulation of Data

ββ decay

GERDA design

Bkg reduction


Latest results

Summary

Phase I

- 09.11.11 09.05.13: $21.6 \text{ kg} \times \text{yr}$
- Additional Phase I data before upgrade: 1.9 kg×yr

Phase II

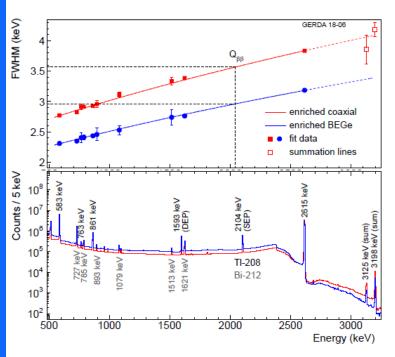
Phase II: 10.8 kg·yr

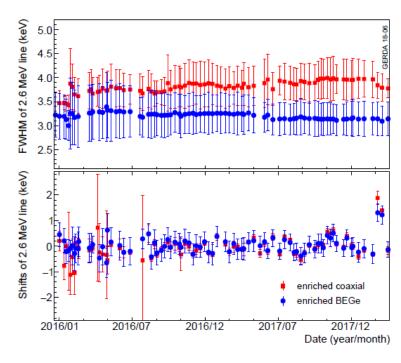
Phase II: 23.2 kg·yr

- Live time: 834.8 d between Dec. 2015 and April 2018
- Duty cycle: 92.9 %
- Data quality cut: 80.4 %
- Phase II exposure analyzed: 58.9 kg×yr
- Total GERDA exposure (April 2018): 82.4 kg×yr

Energy Scale and Stability

ββ decay


GERDA design


Bkg reduction

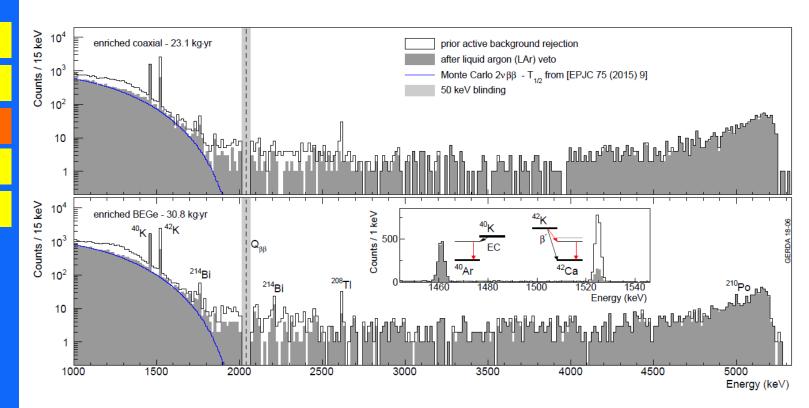
Latest results

Summary

- Detectors calibrated weekly with ²²⁸Th sources
- Shifts between calibrations < 1 keV
- Every 20 s test pulse injection for gain stability measurement
- "Zero area cusp" (ZAC) filter (Eur. Phys. J. C75 (2015) 255)

FWHM @ $Q_{\beta\beta}$: Coax: 3.6(1) keV BEGe: 3.0(1) keV

LAr Veto


ββ decay

GERDA design

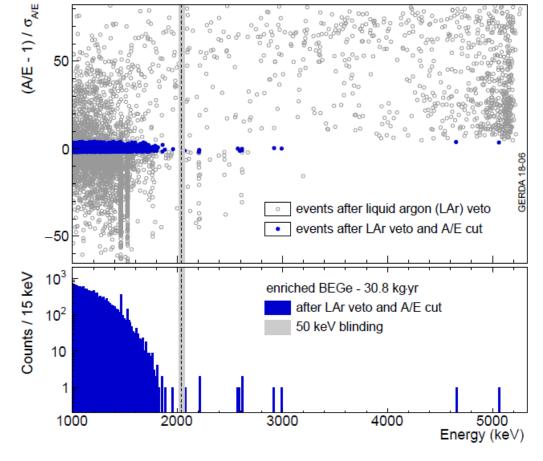
Bkg reduction

Latest results

- Channel-wise (PMT/SiPM) anti-coincidence condition
- Thresholds at ~0.5 P.E.
- Acceptance determined from random triggers: 97.7(1) %
- 40K/42K Compton continua completely suppressed
- γ -rays survival fractions: 40 K (EC) = \sim 100 %, 42 K (β -) \sim 20 %
- Almost pure 2νββ spectrum after LAr veto cut (600-1300 keV)

PSD for BEGe Detectors

ββ decay


GERDA design

Bkg reduction

Latest results

Summary

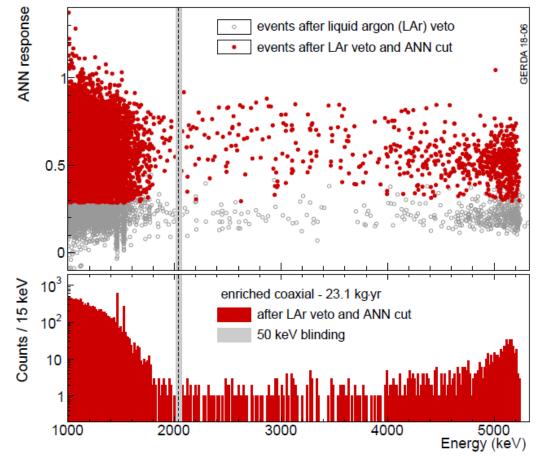
- Discrimination on a single A/E parameter (A current amplitude, E energy)
- Cut values defined from calibrations assuming 90 % DEP acceptance
- high A/E: fast events on p+ electrode (e.g. αs from ²¹⁰Po)
- low A/E: slow events on n+ electrode, multiple scattering

 $\begin{aligned} SF_{BW} &= 82 \% \\ \epsilon_{0\nu\beta\beta} &= (87.6 \pm 2.5) \% \end{aligned}$

BW: [1930,2190] keV, excl. ± 5 keV around ²⁰⁸Tl (SEP), ²¹⁴Bi (FEP) and Q_{BB}

PSD for Coax Detectors

ββ decay


GERDA design

Bkg reduction

Latest results

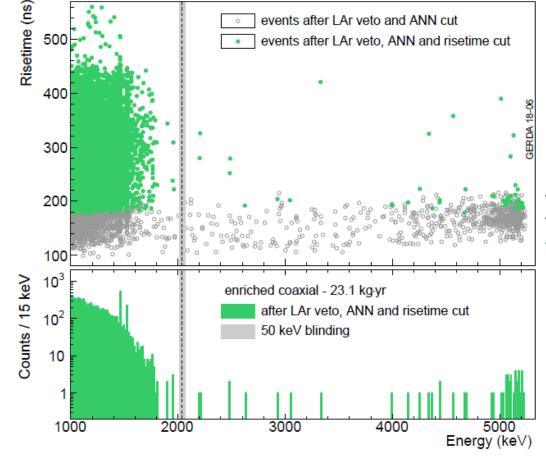
Summary

- MSE rejected with ANN (EPJC 73 (2013) 2583)
- Alphas (fast surface events) rejected with ANN- α / Rise Time (RT) cut
- ANN training on calibration data DEP and FEP as proxies for SSE and MSE, respectively.
- RT optimized on the $2\nu\beta\beta$ (1 1.3 MeV) and α sample (E > 3.5 MeV)

 $\epsilon_{0\nu\beta\beta}~(ANN) = (85.0 \pm 5.0)~\%$

PSD for Coax Detectors

ββ decay


GERDA design

Bkg reduction

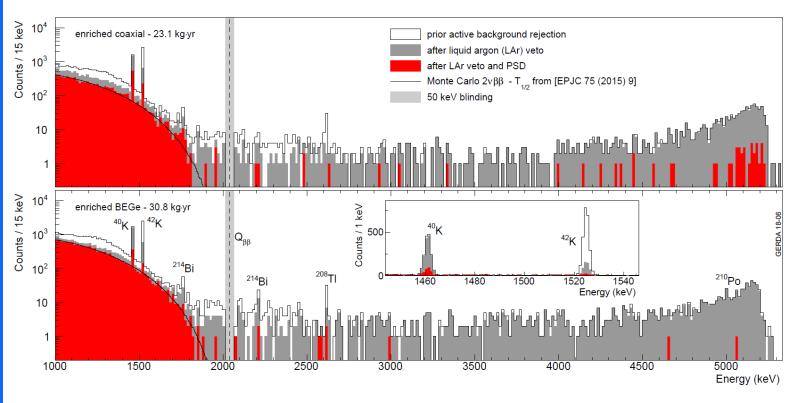
Latest results

Summary

- MSE rejected with ANN (EPJC 73 (2013) 2583)
- Alphas (fast surface events) rejected with ANN- α / Rise Time (RT) cut
- ANN training on calibration data DEP and FEP as proxies for SSE and MSE, respectively.
- RT optimized on the $2\nu\beta\beta$ (1 1.3 MeV) and α sample (E > 3.5 MeV)

$$\begin{split} \epsilon_{0\nu\beta\beta} \ \, & (ANN) = (85.0 \pm 5.0) \ \% \\ \epsilon_{0\nu\beta\beta} \ \, & (RT) = (84.3 \pm 1.1) \ \% \\ \epsilon_{0\nu\beta\beta} \ \, & = (71.6 \pm 4.3) \ \% \end{split}$$

Application of LAr veto and PSD



ββ decay

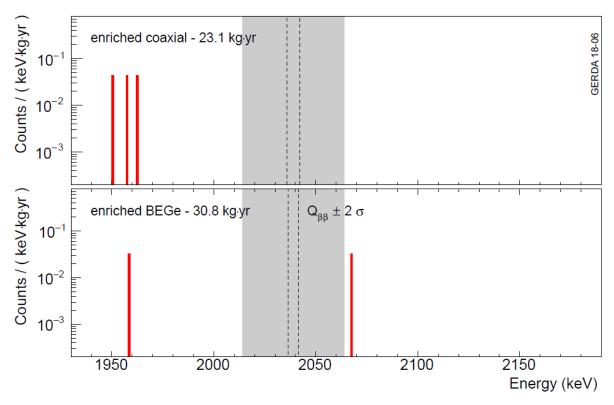
GERDA design

Bkg reduction

Latest results

- LAr veto and PSD are complementary
- Strong reduction of ${}^{40}K/{}^{42}K$ and αs
- Combined efficiency for the 0νββ decay:
 70 % for coax detectors
 86 % for BEGe detectors

Background Index in BW


ββ decay

GERDA design

Bkg reduction

Latest results

Summary

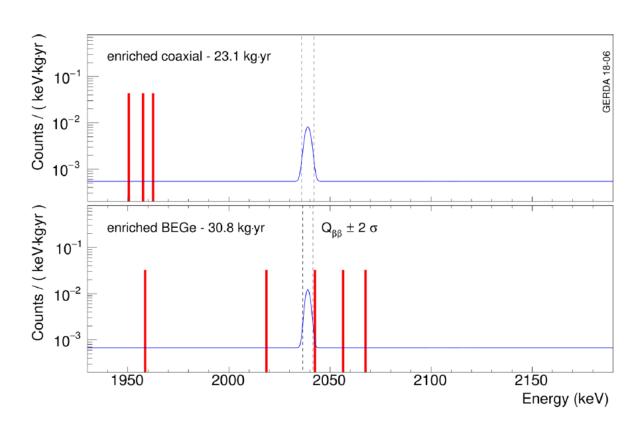
BW: [1930, 2190] keV, excl. ± 5 keV around ²⁰⁸Tl (SEP), ²¹⁴Bi (FEP) and $Q_{\beta\beta}$

Coax: BI =
$$5.7^{+4.1}_{-2.6} \cdot 10^{-4} \text{ cts/(keV-kg-yr)}$$

BEGe: BI = $5.6^{+3.4}_{-2.4} \cdot 10^{-4} \text{ cts/(keV·kg·yr)}$

Less than 1 background event expected in ROI → background-free operation

Statistical Analysis


ββ decay

GERDA design

Bkg reduction

Latest results

Summary

Frequentist:

- best fit $N_{0y} = 0$
- $-\,T_{1/2}\,(0\nu\beta\beta)\,>0.9\times 10^{26}\,\text{yr},\,\,\text{median sensitivity}\,\,T_{1/2}\,(0\nu\beta\beta)>1.1\times 10^{26}\,\text{yr}\,\,\text{at}\,\,90\%\,\,\text{C.L.}$

Bayesian:

 $-T_{1/2} (0\nu\beta\beta) > 0.8 \times 10^{26} \text{ yr, median sensitivity } T_{1/2} (0\nu\beta\beta) > 0.8 \times 10^{26} \text{ yr at } 90\% \text{ C.I.}$

Summary

ββ decay

GERDA design

Bkg reduction

Latest results

Summary

GERDA Phase I design goals reached:

- No $0\nu\beta\beta$ signal observed at $Q_{\beta\beta}$; best fit: $N^{0\nu} = 0$
- Background index: $\sim 10^{-2}$ cts / (keV×kg×yr)
- Exposure 21.6 kg×yr
- $T_{1/2} (0v\beta\beta) > 2.1 \times 10^{25} \text{ yr (90\% C.L.)}$

GERDA Phase II achievements:

- No $0\nu\beta\beta$ signal observed at $Q_{\beta\beta}$; best fit: $N^{0\nu} = 0$
- Background index: ~5.7×10⁻⁴ cts / (keV×kg×yr)
- Exposure 58.9 kg×yr (April 2018, 82.4 kg×yr in total)
- $T_{1/2} (0v\beta\beta) > 0.9 \times 10^{26} \text{ yr } (90\% \text{ C.L.})$
- $m_{BB} \le (0.11 0.26) \text{ eV}$

GERDA Phase II goals:

- Background index: ~10⁻³ cts / (keV×kg×yr)
- Exposure: ~100 kg×yr
- Sensitivity: $\sim 10^{26}$ yr

• GERDA: background-free 0νββ experiment (best sensitivity and discovery potential)

- LEGEND next generation experiment for $T_{1/2}^{0v} \sim 10^{28} \text{ yr}$
- LEGEND-200 at LNGS (GERDA technology) ready in 2020/2021

Beyond GERDA \rightarrow LEGEND

ββ decay

GERDA design

Bkg reduction

Latest results

Summary

First stage:

- Based on existing GERDA infrastructure
- Up to 200 kg of enrGe
- Approved by LNGS (Aug. 2018)
- Under preparation
- Background reduction w.r.t GERDA: ~3
- Anticipated start of data taking in 2021
- $T_{1/2} (0\nu\beta\beta) \ge 10^{27} \text{ yr}$

Subsequent stages:

- Up to 1000 kg of enrGe
- Background reduction w.r.t GERDA: ~30
- Location to be defined
- Required depth (^{77m}Ge) under investigation

Summary

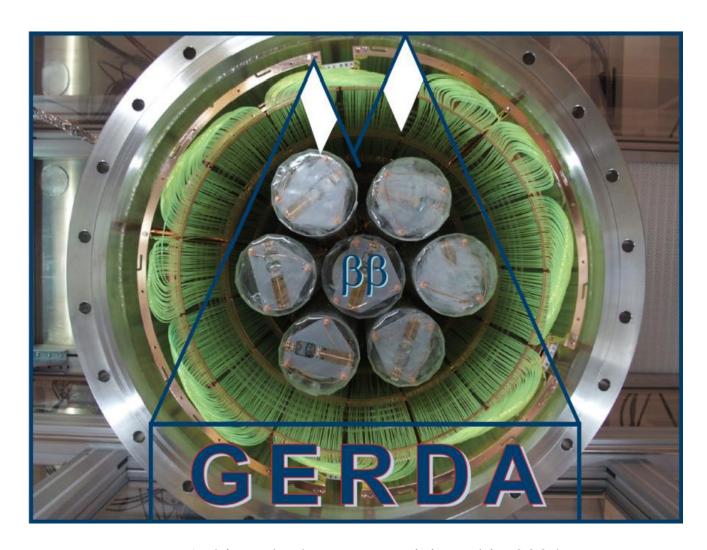
ββ decay

GERDA design

Bkg reduction

Latest results

Summary


ββ decay

GERDA design

Bkg reduction

Latest results

Summary

Achieved what was envisioned in 2004