

CUORE: Cryogenic Underground Observatory for Rare Events

This is why we are all here:

Nuclear Process

Light Majorana Neutrino Exchange (LMNE)

Common Candidate Isotopes:

Isotope	Endpoint	Abundance
⁴⁸ Ca	4.271 MeV	0.187%
¹⁵⁰ Nd	3.367 MeV	5.6%
⁹⁶ Zr	3.350 MeV	2.8%
¹⁰⁰ Mo	3.034 MeV	9.6%
⁸² Se	2.995 MeV	9.2%
¹¹⁶ Cd	2.802 MeV	7.5%
¹³⁰ Te	2.533 MeV	34.5%
¹³⁶ Xe	2.479 MeV	8.9%
⁷⁶ Ge	2.039 MeV	7.8%
¹²⁸ Te	0.868 MeV	31.7%

See ATOMIC DATA AND NUCLEAR DATA TABLES 61, 43-90 (1995) for all 69+19!

How do we measure this signal?

Experimental Considerations:

- Energy Resolution
- Scalability
- Active Background Rejection
- Flexible Isotope Choice

How Bolometers work:

Heat Measurement: Absorber + Thermometer

How Bolometers work:

How Bolometers work:

Energy Deposition causes rise in temperature inversely proportional to the heat capacity.

How Bolometers work:

he decay time of the signal is proportional the thermal resistance.

How Bolometers work:

Heat capacity follows Debye Law

Temperature

0

$$C(T) \propto k_B \left(\frac{T}{\Theta_D}\right)^3$$

At 10 mK, this corresponds to a 0.1 mK rise in temperature.

How Bolometers work:

Time

Dark matter, coherent neutrino scattering, and light detectors for DBD are driving R&D here.

How Bolometers work:

For CUORE-style bolometers, the current goal is 5 keV at 2.5 MeV.

More Bolometer Talks:

Luca Pattavina - New Results on Double Beta Decay with CUPID-0

Yong-Hamb Kim - The AMoRE project

T. O'Donnell (WJB.00001) : Status of the CUORE and prospects for CUPID

A. Drobishev (DM.00007): Ultralow-Radon Environment for the Installation of the CUORE $0\nu\beta\beta$ Decay Detector

V. Singh (DM.00008): Development of cryogenic optical-photon detectors with Ir/Pt-based transition edge sensors for CUPID

R. Huang (DM.00009): Measurements of Light Emissions in TeO2 Crystals

D. Speller (EN.00007): Neutrinoless double-beta decay and other rare event searches with CUORE

- B. Welliver (EN.00008): Application of Cryogenic TES based Light Detectors for CUPID
- B. Schmidt (EN.00009): Li2MoO4 for $0\nu\beta\beta$ decay search in CUPID The Physics case and current status

G. Benato (FN.00009): Background projections for CUPID

A. Leder (MN.00004): Measurement of Quenched Axial Vector Coupling Constant in In-115 Beta Decay and its Impact on Future $0\nu\beta\beta$ Searches

PHYSICAL REVIEW C 93, 034308 (2016)

Forbidden nonunique β decays and effective values of weak coupling constants

M. Haaranen,¹ P. C. Srivastava,² and J. Suhonen¹

¹University of Jyväskylä, Department of Physics, P.O. Box 35 (YFL), FI-40014, University of Jyväskylä, Finland
 ²Department of Physics, Indian Institute of Technology, Roorkee 247667, India
 (Received 28 October 2015; revised manuscript received 22 January 2016; published 8 March 2016)

See Talk by Dr. Alex Leder on Saturday Afternoon.

The highly forbidden ¹¹⁵In decay prevents this crystal from being viable for CUPID, but the precision spectrum measurement can inform the nuclear matrix calculations (quenching of g_A).

Experimental Considerations:

- Energy Resolution
- Scalability
- Active Background Rejection
- Flexible Isotope Choice

The Detector

- 19 Towers, 988 TeO₂ crystals operated as bolometers.
- It is the "Coldest cubic meter in the known universe", arXiv:1410.1560

The History of Bolometric Detectors

CUORE Projected Background Model

Goal: 1x10⁻² counts/keV/kg/year

From: Eur.Phys.J. C77 (2017) no.8, 543

From: Eur.Phys.J. C77 (2017) no.8, 532

The First Data Release:

Dataset 1: May - June Detector Optimization Campaign Dataset 2: August - September

Blue = Physics Red = Calibration Pink = Setup/Configuration Green = Test

All physics runs bracketed by a calibration run.

The First Data Release:

Dataset 1: May - June Detector Optimization Campaign Dataset 2: August - September

Acquired statistics used for this search: (Dataset 1 + Dataset 2):

- natTeO₂ exposure: 86.3 kg yr (37.6 kg yr + 48.7 kg yr)
- ¹³⁰Te exposure: 24.0 kg yr

- Summed energy spectrum of all the CUORE detectors-datasets
- Calibration data used for:
 - energy scale calibration
 - thermal gain stabilisation
 - detector response (line shape) study

239 keV - ²¹²Pb 338, 911, 969 keV - ²²⁸Ac 583, 2615 keV - ²⁰⁸Tl

Detector Response: Line Shape

Fit components:

- (a) triple gaussian for the photopeak
- (b) step-wise smeared multicompton background
- (c) combination of gaussian Xrays escape lines
- (d) linear background
- (e) single gaussian line for the coincident absorption of 2615-keV and 583-keV followed by a single escape process

The fit is done tower-by-tower. The plot shows the sum of the result.

A total of 1811 (92% of live channels) channels-dataset couples were used in this analysis; discarded channels had poor line or pulse shapes, or the energy couldn't be reconstructed accurately.

@ 2615 keVexposure-weightedharmonic mean8.0 keV FWHM

The gamma lines in the background spectrum have been fitted with the complete detector \longrightarrow (0 ± 0.5) keV response function (line shape) to estimate the energy scale bias.

It is also used to scale the energy resolution down to the region of interest.

Dataset 1 (8.3 ± 0.4) keV Dataset 2 (7.4 ± 0.7) keV

- Acquisition of continuous waveforms
- Triggering
- Data preprocessing: estimation of raw parameters
- Pulse filtering with Optimum Filter
- Thermal Gain Stabilization (TGS): calibration and heater-based
- Energy calibration and best energy estimator selection
- Particle event selection Pulse Shape Analysis
- Coincidence analysis w/ detector response synchronization and software threshold @ 150 keV (to prevent any spectral shape distortion due to threshold effects in the ROI)
- Energy spectrum

Very similar to what was developed and used for CUORE-0 (Phys. Rev. C 93, 045503 (2016))

	Dataset 1	Dataset 2
Trigger	(99.766 ± 0.003) %	(99.735 ± 0.004) %
Energy reconstruction	(99.168 ± 0.006) %	(99.218 ± 0.006) %
Base cuts (pile-up, global data quality)	(95.63 ± 0.01) %	(96.69 ± 0.01) %
Anti-coincidence	(99.4 ± 0.5) %	(100.0 ± 0.4) %
Pulse shape analysis	(91.1 ± 3.6) %	(98.2 ± 3.0) %
All cuts except containment	(85.7 ± 3.4) %	(94.0 ± 2.9) %
0vββ containment	$(88.35 \pm$	0.09) %
Total	(75.7 ± 3.0) %	(83.0 ± 2.6) %

Event selection occurs after periods of low-quality data (~1% of the total live time) are removed.

- To blind our data we randomly move a fraction of events from +/- 20 keV of 2615 keV to the Q-value and vice versa
- The blinding algorithm produces an artificial peak around the NDBD Q-value hiding the real NDBD rate of ¹³⁰Te

This method of blinding the data preserves the integrity of the possible signal while maintaining the spectral characteristics with measured energy resolution and introducing no discontinuities in the spectrum.

155 Events in the ROI

Simultaneous UEML (Unbinned Extended Maximum Likelihood) fit Energy region 2465-2575 keV

• The fit has 3 components:

- 1. Posited peak at the **Q-value of** ¹³⁰Te:
 - energy scale defined relative to the ²⁰⁸Tl line in calibration data to account for residual mis-calibration between channels
 - signal normalization common to all detectors-datasets (1 free parameter)
- 2. Floating peak to account for the ⁶⁰Co sum gamma line (2505 keV):
 - energy scale defined relative to the ²⁰⁸Tl line in calibration data to account for residual mis-calibration between channels
 - rate common to all detectors-dataset, with a correction accounting for the time elapsed between the two datasets (1 free parameter)
- 3. **Flat background**, attributed to multi scatter Compton events from ²⁰⁸Tl and surface alpha events:
 - common to all detectors in a single dataset, two independent parameters for the two datasets to account for differences in the background rejection efficiency (2 free parameters)
- The peaks in each channel-dataset are fitted with its own line shape (fixed from calibration data)

Systematic Uncertainties

Systematic	Absolute uncertainty $[10^{-24} \text{ yr}]$	Relative uncertainty
Resolution	-	1.5%
Q-value location	-	0.2%
No subpeaks	0.002	2.4%
Efficiency	-	2.4%
Linear fit	0.005	0.8%

ROI background index: $(1.49_{-0.17}^{+0.18}) \times 10^{-2} \text{ c/(keV \cdot kg \cdot yr)}$ $(1.35_{-0.18}^{+0.20}) \times 10^{-2} \text{ c/(keV \cdot kg \cdot yr)}$ Best fit for ⁶⁰Co mean: (2506.4 ± 1.2) keV

Best fit decay rate: $(-1.0_{-0.3}^{+0.4} \text{ (stat.)} \pm 0.1 \text{ (syst.)}) \times 10^{-25} \text{ / yr}$

No evidence of signal Profile likelihood integrated on the physical region $(\Gamma^{0v} > 0)$

Decay rate limit (90% CL, including systematics): 0.51 × 10⁻²⁵ / yr Half-life limit (90% CL, including systematics): 1.3 × 10²⁵ yr Median expected sensitivity: 7.0 × 10²⁴ yr

We combined the CUORE result with the existing ¹³⁰Te: 19.75 kg·yr of Cuoricino and 9.8 kg·yr of CUORE-0

The combined 90% C.L. limit is $T_{0\nu} > 1.5 \times 10^{25}$ yr

In terms of the Majorana Mass:

NME: JHEPO2 (2013) 025 Nucl. Phys. A 818, 139 (2009) Phys. Rev. C 87, 045501 (2013) Phys. Rev. C 87, 064302 (2014) Phys. Rev. C 91, 034304 (2015) Phys. Rev. C 91, 024613 (2015) Phys. Rev. C 91, 024309 (2015) Phys. Rev. C 91, 024316 (2015) Phys. Rev. Lett. 105, 252503 (2010) Phys. Rev. Lett. 111, 142501 (2013)

Experiment:

130Te: 1.5 × 1025 yr from this analysis PRL 120, 132501 (2018) 76Ge: 8.0 × 1025 yr from PRL 120, 132503 (2018) 136Xe: 1.1 × 1026 yr from Phys. Rev. Lett. 117, 082503 (2016) 100Mo: 1.1 × 1024 yr from Phys. Rev. D 89, 111101 (2014) 82Se: 2.4 × 1024 yr from Phys. Rev. Lett 120, 232502 (2018) CUORE sensitivity: 9.0 × 1025 yr

The limit corresponds to $m_{\beta\beta}$ < 140–400 meV

Understanding the Background

- Backgrounds generally consistent with expectations
- ²¹⁰Po excess appears to be from shallow contamination in copper around the detectors
 - Current estimated contribution to ROI at the level of 10⁻⁴ cnts/(keV kg yr)

Building the Model

- 86.3 kg·yr of TeO₂ from summer 2017
- Split data into inner and outer layers
- Split data into Multiplicity 1 (M1), Multiplicity 2 (M2),
 and Multiplicity 2 Sum (Σ2) spectra
 - Higher multiplicity spectra sensitive to backgrounds

Outer Layer

Details of the Model

- Simulate the contaminations coming from different cryostat components using a detailed Geant4 MC simulation
- About 60 independent parameters representing various contaminations that could contribute to the CUORE background model
- Perform a large Bayesian fit to the data using a MCMC Gibbs sampler
- Flat priors on all parameters except muons which come from a cosmogenic analysis

Volume	Туре	Components
TeO ₂	Bulk	$2\nu\beta\beta$, ²¹⁰ Pb, ²³² Th, ²²⁸ Ra- ²⁰⁸ Pb, ²³⁸ U- ²³⁰ Th, ²³⁰ Th ²²⁶ Ra- ²¹⁰ Pb, ⁴⁰ K, ⁶⁰ Co, ¹²⁵ Sb, ¹⁹⁰ Pt
TeO ₂	Surface (0.01 μ m)	²³² Th, ²²⁸ Ra- ²⁰⁸ Pb, ²³⁸ U- ²³⁰ Th, ²²⁶ Ra- ²¹⁰ Pb, ²¹⁰ Pb
TeO ₂	Surface (1 μ m)	²¹⁰ Pb
TeO ₂	Surface (10 μ m)	²¹⁰ Pb, ²³² Th, ²³⁸ U
CuNOSV	Bulk	²³² Th, ²³⁸ U, ⁴⁰ K, ⁶⁰ Co, ⁵⁴ Mn
CuNOSV	Surface (0.01 μ m)	²¹⁰ Pb, ²³² Th, ²³⁸ U
CuNOSV	Surface (1 μ m)	²¹⁰ Pb, ²³² Th, ²³⁸ U
CuNOSV	Surface (10 μ m)	²¹⁰ Pb, ²³² Th, ²³⁸ U
Roman lead	Bulk	²³² Th, ²³⁸ U, ^{108m} Ag
Top lead	Bulk	²³² Th, ²³⁸ U, ²¹⁰ Bi
Ext. lead	Bulk	²¹⁰ Bi
CuOFE	Bulk	²³² Th, ²³⁸ U, ⁶⁰ Co
External	-	Cosmic muons

Fitting the Background

Able to reconstruct the major features of the observed spectrum in CUORE

Fitting the Background

Measuring the $2\nu\beta\beta$ Half-life

Measuring the $2\nu\beta\beta$ Half-Life

$$\begin{split} \Gamma_{1/2}^{2\nu} &= [8.7 \pm 0.1 \,(\text{stat.}) \pm 0.2 \,(\text{syst.})] \times 10^{-22} \,\,\text{yr}^{-1} \\ T_{1/2}^{2\nu} &= [7.9 \pm 0.1 \,(\text{stat.}) \pm 0.2 \,(\text{syst.})] \times 10^{20} \,\,\text{yr} \end{split} \tag{Preliminary}$$

 $(For Reference) \begin{array}{c} \text{CUORE-0}: \ T_{1/2}^{2\nu} = [8.2 \pm 0.2 \,(\text{stat.}) \pm 0.6 \,(\text{syst.})] \times 10^{20} \,\text{yr} \\ \text{NEMO-3}: \ T_{1/2}^{2\nu} = [7.0 \pm 0.9 \,(\text{stat.}) \pm 1.1 \,(\text{syst.})] \times 10^{20} \,\text{yr} \end{array}$

Detector Optimization

- October December 2017: Scan of detector performance vs temperatures
 - Selecting a new operating temperature of 11mK
- January March 2018: Warmed the cryostat to 100K to upgrade a set of gate valves
- Returned to base temperature in early March
- March 2018, performed Pulse Tube Phase Scan

Normalized NPS 10

200

 10^{-2}

Top of the Cryostat

All Channels AP Weighted Total Noise Median

400

300

500

600

700

800

PhaseID

- April calibration data characterized by energy resolution of 7.6 keV FWHM with 93% of channels passing cuts (using same processing procedures)
- Still working to achieve the energy resolution goal of 5 keV FWHM
- Back to stable physics data taking in May 2018
- Many potential physics searches:
 - Symmetry violation searches: 0v, Majoron emission, CPTV
 - Low energy searches: Dark Matter, axions
 - Nuclear physics measurements: other ββ decays and decays to excited states, β⁺/E.C. decays

Future Outlook

- With 7 weeks of data, set the most stringent limit on the 0vββ half-life of ¹³⁰Te to date
- Made the most precise measurement of the $2\nu\beta\beta$ half-life of ¹³⁰Te to date
- We have restarted physics data taking
- CUORE will continue to be one of the most sensitive searches for 0vββ over the coming years
 - Ultimate 90% sensitivity to $0\nu\beta\beta$ half-life of $T_{1/2} = 9 \times 10^{25}$ yr

