

New 0vββ results from CUPID-0

L.Pattavina luca.pattavina@gssi.it

Gran Sasso Science Institute Technical University of Munich

S

G

S

Technische Universität München

Outline

- 0vββ physics
- The cryogenic calorimetric technique
- CUPID-0
 - Detector design and construction
 - Detector performance
- Results

Expected signal & bkg

Computed energy spectrum

Signature: peak at the sum-energy (Q) of the two electrons (2-3 MeV).

a-region

Energy spectrum from natural radioactivity

β/γ-region

High $0v\beta\beta$ Q-value \rightarrow low β/γ background

÷

a bkg suppression → close to zero-bkg

Neutrino mass sensitivity

Current limit on neutrino mass are set at the level of ~100 meV To probe lower mass region higher sensitivity is needed: 1 mass and 1 background

$$(t_{1/2}^{0\nu})^{-1} = |\mathcal{M}_{0\nu}^2| \cdot G_{0\nu} \cdot m_{\beta\beta}^2$$

The main goal of next-generation experiment is to span the entire IH region of neutrino mass.

CUPID

Cuore Upgrade with Particle ID

III. SCIENTIFIC OBJECTIVE

CUPID is a proposed bolometric $0\nu\beta\beta$ experiment which aims at a sensitivity to the effective Majorana neutrino mass on the order of 10 meV, covering entirely the so-called inverted hierarchy region of the neutrino mass pattern. CUPID will be designed in such a way that, if the neutrino is a Majorana particle with an effective mass in or above the inverted hierarchy region (~ 15 - 50 meV), then CUPID will observe $0\nu\beta\beta$ with a sufficiently high confidence (significance of at least 3σ). This level of sensitivity corresponds to a $0\nu\beta\beta$ lifetime of $10^{27} - 10^{28}$ years, depending on the isotope. This primary objective poses a set of technical challenges: the sensitive detector mass must be in the range of several hundred kg to a ton of the isotope, and the background must be close to zero at the ton × year exposure scale in the ROI of a few keV around $0\nu\beta\beta$ transition energy. <u>http://arxiv.org/abs/1504.03599</u>

Five steps beyond the present technology are required:

- Isotopic enrichment
- Active bkg rejection
- Improved material selection
- Better energy resolution
 - Reduced cosmo-activation

* } CUPID-0

The underground facility

Unique site for low background physics with cryogenic detectors

Experimental location:

- Average depth ~ 3600 m w.e.
- Muon flux ~ 2.6×10⁻⁸ µ/s/cm²
- Neutrons < 10 MeV: <10- 6 n/s/cm²

Scintillating bolometers

A bolometer is a highly sensitive **calorimeter** operated @ cryogenic temperature (~10 mK).

Energy deposits are measured as temperature variations of the absorber.

If the absorber is also an **efficient scintillator** the energy is converted into **heat** + **light**

Bolometer features:

- high energy resolution O(1/1000)
- ▶ wide choice of compound ¹³⁰TeO₂, Li₂¹⁰⁰MoO₄, Zn⁸²Se
- high detection efficiency (source = detector)

scalable to large masses

▶ particle ID

A **background-free experiment** is possible: **α-background**: identification and rejection β/γ-background: ββ isotope with large Q-value

NTDlight

→ Light

Light Detector

CUPID-0

CUPID-0 is the first array of scintillating bolometers for the investigation of ⁸²Se 0vββ

- ⁸²Se Q-value 2998 keV
- 95% enriched Zn⁸²Se bolometers
- 26 bolometers (24 enr + 2 nat) arranged in 5 towers
 - 10.5 kg of ZnSe
 - 5.17 kg of ⁸²Se -> $N_{\beta\beta}$ = 3.8x10²⁵ $\beta\beta$ nuclei
- LD: Ge wafer operated as bolometer
- Simplest modular detector → scale up
 - Copper structure (ElectroToughPitch)
 - PTFE holders
 - Light Reflector (VIKUITI 3M)

30 cm

CUPID-0

CUPID-0 is the first array of scintillating bolometers for the investigation of ^{82}Se 0vBB

- ⁸²Se Q-value 2998 keV
- 95% enriched Zn⁸²Se bolometers
- 26 bolometers (24 enr + 2 nat) arranged in 5 towers
 - 10.5 kg of ZnSe
 - 5.17 kg of ${}^{82}Se \rightarrow N_{\beta\beta} = 3.8 \times 10^{25} \beta\beta$ nuclei
- LD: Ge wafer operated as bolometer
- Simplest modular detector → scale up
 - Copper structure (ElectroToughPitch)
 - PTFE holders
 - Light Reflector (VIKUITI 3M)

This design has the main goal of Minimize mass of passive materials Cu ~22% - PTFE/Vik. ~0.1% - ZnSe+Ge ~78%

9

CUPID-0 Light Detectors

10

- Well established technology for bolometric LDs
 - Ge disk 44.5 x 0.17 mm
 - Ge-NTD thermal sensor 2x1.5x3 mm³
 - Si-heater for gain drift corrections
- One face coated with 60 nm SiO₂
 - Light collection enhancement ~50%
- Performance are crucial for background suppression
 - Light vs Heat: α leakage in β/γ ROI band
 - PSA of Light: highly efficient PID

CUPID-0 has 31 LDs

Calibration scatter plot of a ZnSe crystal

CUPID-0 Light Detectors

- Well established technology for bolometric LDs
 - Ge disk 44.5 x 0.17 mm
 - Ge-NTD thermal sensor 2x1.5x3 mm³
 - Si-heater for gain drift corrections
- One face coated with 60 nm SiO₂
 - Light collection enhancement ~50%
- Performance are crucial for background suppression
 - Light vs Heat: α leakage in β/γ ROI band
 - PSA of Light: highly efficient PID

CUPID-0 has 31 LDs

CUPID-0 assembly

Complex detector design: CUPID-0 crystals have all different shapes and heights ranging from 21 mm to 58 mm.

Assembly started in Oct-2016

#2 ZnSe installation

#3 LD installation

CUPID-0 assembly

Complex detector design: CUPID-0 crystals have all different shapes and heights ranging from 21 mm to 58 mm.

Assembly started in Oct-2016

#3 LD installation

Detector installation

Detector installed in the former CUORICINO/CUORE-0 cryostat (80's).

Upgrades:

Double stage pendulum for low vibrational noise

✓ Improve LD performance

Cryostat wiring: can host up to 120 channels
 CUPID-0 uses more than 60 channels
 CUPID-0/Mo next phase can be hosted

Data taking

Background data presented here were collected between Jun 2017-Apr 2018 Exposure: 5.46 kg · y of ZnSe (2.90 kg · y ⁸²Se)

CUPID-0 Coll., Phys. Rev. Lett. 120, 232502 (2018) + 2.02 kg · y of ZnSe

Energy calibration

Total ²³²Th calibration energy spectrum

Periodical (~4 days every month) calibration with ²³²Th external source.

Energy calibration

Total ⁵⁶Co calibration energy spectrum

Calibration cross check: ⁵⁶Co: Q-value: 4.57 MeV, T_{1/2}: 77 days

Energy calibration

We linearly extrapolate the width of the primary peak at $Q_{\beta\beta}$. Energy resolution in the ROI FWHM(⁵⁶Co): (22.5±1.2) keV. Consistent with (23.0±0.6) keV extracted from ²³²Th calibration.

First level data analysis:

- 1. Optimum filtering
- 2. Gain stability corrections
- 3. Synchronisation heat-light

First level data analysis:

- 1. Optimum filtering
- 2. Gain stability corrections
- 3. Synchronisation heat-light
- → Maximise S/N ratio in the frequency domain
- → Off-line gain correction with artificial pulses
- → To each event is associated 1 light & 1 Heat event

Second level data analysis:

- Rejection of "non-particle" events via Pulse Shape Analysis
- Anti-coincidence cut Δ =20 msec

Total bkg energy spectrum

→ Background Index in the ROI: (3.2±0.4)*10⁻² c/keV/kg/y

Turn **ON** the Light Detector:

- Rejection of α's with PSA on light channel
- Cut optimized with a pure β/γ sample in order to have $\epsilon_{signal} \sim 100\%$

→ Background Index in the ROI: (1.3±0.2)*10⁻² c/keV/kg/y

Rejection of **a-related events** (high energy γ):

25

→ Background Index in the ROI: (3.2±1.3)*10⁻³ c/keV/kg/y

Data Selection:

Anti-coincidence between ZnSe: → BI: (3.2±0.4)*10⁻² c/keV/kg/y

α particles rejection:
→ BI: (1.3±0.2)*10⁻² c/keV/kg/y

Delayed coincidence veto:

→ BI: (3.2±1.3)*10⁻³ c/keV/kg/y
→ only 7 events in Rol

Global data selection efficiency (exposure weighted harmonic mean over data-set): 93±2%

Lowest background ever achieved with a cryogenic detector

UEML Simultaneous fit over the datasets

T_{1/2}(⁸²Se →⁸²Kr) > 4.0 · 10²⁴ yr @ 90C.L.

m_{ββ} < (290-596)¹ meV

NEMO3 measurement 3.6 · 10²³ yr @ 90C.L.

A. S. Barabash and V. B. Brudanin, NEMO, Phys. Atom. Nucl. 74, 312 (2011),

Background model (1)

⁸²Se(2vββ): Continuum energy spectrum: (9.2±0.7)·10¹⁹ y

NEMO3: (9.39 ±0.17*stat* ±0.58*sys*)·10¹⁹ y

Background model (2)

Total background energy spectrum

- The small volume of the detector prevents an efficient identification of μ events.
 - High multiplicity events for μ norm. factor
 - Comparison data vs. MC
 - Relevant µ contribution in the ROI (~50%)

(1.8 ± 0.2s*tat* ± 0.5*sys*)*10⁻³ c/keV/kg/y

- Full-comprehensive background model is on-going
 - Hard because of the extremely low statistics
 - High decay rate of $^{82}Se~2\nu\beta\beta$
- 30

Conclusions

- The first next generation $0\nu\beta\beta$ demonstrator is smoothly taking data.
- The efficient α-background rejection was demonstrated and allows to reach an unprecedented BKG level for a bolometric experiment

 $BKG = 3.2^{+1.3}_{-1.1} \times 10^{-3} counts / (keV \cdot kg \cdot y)$

 The analysis of the first data (5.46 kg y of ZnSe) allows to set the best limit on ⁸²Se 0vββ half-life

T^{ov} > 4.0 · 10²⁴ yr @ 90C.L.

m_{ββ} < (290-596)¹ meV

- We plan to reach an exposure of 10 kg y of ZnSe in order to obtain a reliable background model
 - The scintillating bolometric technique is suitable for investigating the v IH rmass region

J. Engel and J. Menéndez, Rept. Prog. Phys. 80, 046301 (2017).

J. M. Yao, L. S. Song, K. Hagino, P. Ring, and J. Meng, Phys. Rev. C 91, 024316 (2015).

J. Menéndez, A. Poves, E. Caurier, and F. Nowacki, Nucl. Phys. A 818, 139 (2009), arXiv:0801.3760.

F. Šimkovic, V. Rodin, A. Faessler, and P. Vogel, Phys. Rev. C 87, 045501 (2013), arXiv:1302.1509.

T. R. Rodriguez and G. Martinez-Pinedo, Phys. Rev. Lett. **105**, 252503 (2010), arXiv:1008.5260.

A. Meroni, S. T. Petcov, and F. Simkovic, JHEP **02**, 025 (2013), arXiv:1212.1331.

1