Neutrinoless double beta decay without proton decay

Xinshuai Yan

Department of Physics and Astronomy University of Kentucky Lexington, KY

October 21st-23rd, 2018, DBD18, Hawaii

Based, in part, on... Susan Gardner and X.Y., <u>arXiv:1602.00693</u>, <u>1808.05288, 1810.XXXX</u>.

Origin of neutrino mass

Neutrino oscillation

Neutrino flavor-changing oscillations
 Observed by Super-K and Sudbury Neutrino Observatory
 (therefore) neutrinos have mass

• Majorana or Dirac neutrinos?

- > If Dirac, like other fermions in SM, it can be generated by the Higgs mechanism (a right-handed v field is needed)
- ➢ If Majorana, a dimension five mass term appears [Weinberg, (1979)]
- Observation of neutrinoless double $(0\nu\beta\beta)$ decay shows that L is broken by two units and neutrino has an effective Majorana mass. [Schechter & Valle, (1982)]

Arthur B. McDonald

Mechanisms of $0v\beta\beta$ decay

 $0\nu\beta\beta$ is mediated by a mass dimension [d]= 9 operator: $\mathcal{O} \propto \overline{u}\overline{u}dd\overline{e}\overline{e} \qquad Or \pi^{-}\pi^{-} \rightarrow e^{-}e^{-}$

(a)-(c): A light neutrino is exchanged --- "long-range" diagrams;
 (d): Mediated by heavy particles --- "short-range" diagram.

If observed, regardless of the mechanism causing it, the v has a Majorana mass! [Schechter & Valle, (1982)]

Two topologies of $0\nu\beta\beta$ decay operator

The two basic tree-level topologies realizing $[d]=9 \ 0 \nu\beta\beta \ decay \ operator:$

Outline

- Use "minimal" models: the new interactions respect SM gauge symmetry and are also renormalizable ([d]=3, 4).
- Add new scalars and vectors, and study B and/or L violations.
- We remove proton (p) decay ($|\Delta B| = 1$) explicitly.
 - Non-observation of proton (p) decay set severe constraints on new physics (GUT scale);
 - □ Lack of "secret ingredients", such as discrete symmetry, etc. as would appear in a GUT
- We check what mechanisms (models) of 0νββ decay can survive.

Eliminate new particles that generate p ($|\Delta B|=1$) decay

Possible interactions between new particles and SM fermions permit no proton decay

▶ e.g., Xee, VLe, Xud, $X\overline{u}\overline{e}$, XQQ, ...

More precisely, e.g., *VLe* and *Xee*:

 $g^{ab}V_{3\mu}L^a\sigma^\mu e^b$, $g_1^{ab}X_1(e^ae^b)$

(a and b denote generation.)

Note: the representations of new scalars and vectors are in $SU(3) \times SU(2) \times U(1)$ $X(3,1,-4/3), Xuu, X\bar{d}\bar{e}$ At low E $\mathcal{L} = udue \longrightarrow p \rightarrow e^+ \pi^0$

[Arnold, Fornal, and Wise (2013)] ⁵

Scalar/vector-fermion interactions without p-decay

Possible interactions between new particles and SM fermions:

Vector	operator	Scalar	operator
$V_1(1,1,0)$	$V\bar{L}L, V\bar{e}e$	$X_1(1,1,2)$	Xee
$V_2(1, 3, 0)$	$V\bar{L}L$	$X_2(1,1,1)$	XLL
$V_3(1,2,\frac{3}{2})$	VLe	$X_3(1,3,1)$	XLL
$V_4(\bar{6}, 2, -\frac{5}{6})$	VQu	$X_4(\bar{6}, 3, -\frac{1}{3})$	XQQ
$V_5(\bar{6},2,\frac{1}{6})$	VQd	$X_5(\bar{6}, 1, -\frac{1}{3})$	XQQ, Xud
$V_1(1, 1, 0)$	$Var{Q}Q,Var{u}u,\!Var{d}d$	$X_6(3,1,\frac{2}{3})$	Xdd
$V_6(1, 3, 0)$	$Var{Q}Q$	$X_7(\bar{6}, 1, \frac{2}{3})$	Xdd
$V_7(1, 1, 1)$	$V ar{u} d$	$X_8(\bar{6}, 1, -\frac{4}{3})$	Xuu
$V_8(3, 1, \frac{2}{3})$	$Var{Q}L, Var{d}e$	$X_9(3, 2, \frac{7}{6})$	$X\bar{Q}e, XL\bar{u}$
$V_9(3,3,\frac{2}{3})$	$Var{Q}L$		
$V_{10}(3,1,\frac{5}{3})$	$V ar{u} e$		

[Arnold, Fornal, and Wise (2013) Assad, Fornal, Grinstein (2018) S. Gardner and X. Y. (2018)]

These interactions do not break L or B!

$0\nu\beta\beta$ decay in minimal *scalar* models

- Note the different shorthand: $U_{em}(1) \times SUc(3)$
- With p decay

One example:

	$ \text{Mediator} \ (Q_{\text{em}}, Q_{\text{colour}}) $									
#	Decomposition	$S \text{ or } V_{ ho}$	S' or V'_{ρ}	S'' or V''_{ρ}	Models/Refs./Comments					
1	$(ar{u}d)(ar{u}d)(ar{e}ar{e})$	(+1, 1)	(+1, 1)	(-2, 1)	Addl. triplet scalar [69]					
					LR-symmetric models [40, 42					
		(+1, 8)	(+1, 8)	(-2, 1)						
2	$(ar{u}d)(ar{u}ar{e})(ar{e}d)$	(+1, 1)	(-1/3, 3)	$(-2/3, \bar{3})$						
		(+1, 8)	(-1/3, 3)	$(-2/3, \bar{3})$						
3	$(ar{u}ar{u})(dd)(ar{e}ar{e})$	(+4/3, 3)	(+2/3, 3)	(-2, 1)	only with $V_{ ho}$ and $V'_{ ho}$					
		(+4/3, 6)	$(+2/3, \overline{6})$	(-2, 1)						
4	$(ar{u}ar{u})(ar{e}d)(ar{e}d)$	(+4/3, 3)	$(-2/3, \bar{3})$	$(-2/3, \bar{3})$	only with $V_{ ho}$					
		(+4/3, 6)	$(-2/3, \overline{3})$	$(-2/3, \overline{3})$						
5	$(ar{u}ar{e})(ar{u}ar{e})(dd)$	(-1/3, 3)	(-1/3, 3)	(+2/3, 3)	only with V''_{ρ}					
		(-1/3, 3)	(-1/3, 3)	$(+2/3, \overline{6})$	[70, 71]					

[Bonnet et al (2013)]

Without p decay

#	Decomposition	S	S'	S''
3	$(\bar{u}\bar{u})(dd)(\bar{e}\bar{e})$	$(-4/3, \bar{6})$	$(+2/3, \bar{6})$	(+2, 1)

Possible interactions (at D) in SM rep.:

 $\begin{array}{c} \succ X_{1}X_{8}X_{7}^{+} \\ \succ X_{3}X_{4}X_{7}^{+} \\ \succ X_{3}X_{8}X_{4}^{+} \end{array}$

X(3,1,-4/3), Xuu is eliminated by no-proton decay condition.

 $5 \rightarrow 1$: Number of decompositions drops!!

[[]S. Gardner and X. Y. (2018)]

$0\nu\beta\beta$ decay in minimal *scalar* models

The number of decomposition for topology (I) drops : $18 \rightarrow 5!$

Without p decay

#	Decomposition	S	ψ	S'
3-i	$(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$	$(-4/3, \bar{6})$	(+1/3, 6)	$(+2/3, \bar{6})$
3-ii	$(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$	$(-4/3, \bar{6})$	(+5/3, 3)	(+2, 1)
3-iii	$(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$	$(+2/3, \bar{6})$	$(+4/3, \bar{3})$	(+2, 1)
4-ii-a	$(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$	$(-4/3, \bar{6})$	(+5/3,3)	(+2/3,3)
4-ii-b	$(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$	$(-4/3, \bar{6})$	(+1/3, 6)	(+2/3, 3)

[S. Gardner and X. Y. (2018)]

Possible interactions at A, B, C, D in SM rep.: e.g., 4-ii-a:

$$X_8^* \bar{u}\bar{u}, \ X_8 \psi d_R, \ X_9 \bar{\psi}\bar{e}_L, \ X_9^* Q\bar{e}, \ \text{with} \ \psi = (3, 1, \frac{5}{3})$$

 X_i denotes a new scalar.

$0\nu\beta\beta$ decay in minimal *vector* models

- ★ The number of decomposition for topology (II) drops: 5 → 0!
- ★ The number of decomposition for topology (I) drops: 18 → 11!

Observation:

- > No-p decay has great impact on mechanisms of $0\nu\beta\beta$ decay in both topologies.
- > We explore possible connection between patterns of $|\Delta B|=2$ process and $0v\beta\beta$ decay within minimal *scalar* models in topology (II).

Possible interactions at A, B, C, D:

E.g., **4-ii-a**:

$$V_4^* \bar{Q} \bar{\sigma} \bar{u}, \quad V_4 \psi d_R, \quad V_9 \bar{\psi} \bar{e}_L, \quad V_9^* d_L \bar{\sigma} \bar{e}_L \Rightarrow \psi = (3, 2, 7/6)$$

 \bullet V_i denotes a new vector.

Patterns of $|\Delta \mathbf{B}|=2$ & Majorana neutrino

Model	$n \bar{n}?$	$e^-n \to e^-\bar{n}?$	$e^- p \to \bar{\nu}_X \bar{n}?$	$e^-p \to e^+\bar{p}$	$? 0 \nu \beta \beta ?$	$n\bar{n}$ τ	$\tau^-\pi^- ightarrow e^-e^-$	$e^- p o ar{ u}_{\mu, au} ar{n}$	$e^-p ightarrow ar{ u}_e ar{n}/e^+p$	$e^-p \to e^+ \bar{p}$
M3	Y	N	Ν	Y	Y[A]	M1	А	M5	M7	M10
M2	Y	Y	Y	Y	Y [B]	M2	B ^(*)	M6	M11	M12
M1	Υ	Y	Y	Ν	? [D]	M3	$\mathrm{C}^{(*)}$	M13	M14	M15
_	Ν	Ν	Y	Y	? [C?]				M16	

One example: No $e^-n \rightarrow e^-\overline{n}$ & Yes $n\overline{n}$,

- M3 has scalar content X_7 and X_8 ;
- $e^-p \rightarrow e^+\bar{p}$ only \Rightarrow M10, M12, or M15. Common scalar content: X₁

 \implies A \implies $\pi^-\pi^- \rightarrow e^-e^-$ decay

M3	X ₇ X ₇ X ₈	M10	$X_7 X_8 X_8 X_1$
		M12	$X_5 X_5 X_8 X_1$
А	$X_1 X_8 X_7^{\dagger}$	M15	$X_4 X_4 X_8 X_1$

[S. Gardner and X. Y. (2018)]

"Everything not forbidden is compulsory."

Gell-Mann quotes it from T. H. White

Summary

- We revisit d=9 $0\nu\beta\beta$ decay operators and explore their minimal ultraviolet-complete models with new scalars and vectors.
- No proton decay condition eliminates many of the mechanisms of 0vββ decay, especially in topology II. Only one survives in scalar models (in the (SU(3), U(1)_{em}) basis), and none in vector models.
- Within topology II scalar models, we show that the observation of $n\bar{n}$ oscillations and of particular nucleon-antinucleon conversion processes can reveal the Majorana nature of the neutrino.

Backup Slides

> With p decay

Topology I:

		Long	Mediat	or $(U(1)_{em})$	$SU(3)_c$	
#	Decomposition	Range?	S or V_{ρ}	ψ	S' or V'_{ρ}	Models/Refs./Comments
1-i	$(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$	(a)	(+1, 1)	(0, 1)	(-1, 1)	Mass mechan., RPV [58–60],
						LR-symmetric models [39],
						Mass mechanism with ν_S [61], TeV scale seesaw e.g. [62–63]
			(+1, 8)	(0, 8)	(-1, 8)	[64]
1-ii-a	$(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$		(+1, 1)	(+5/3, 3)	(+2, 1)	[0-]
			(+1,8)	(+5/3, 3)	(+2, 1)	
1-ii-b	$(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$		(+1, 1)	(+4/3, 3)	(+2, 1)	
	(- D (D (-) ()		(+1,8)	(+4/3, 3)	(+2, 1)	
2-i-a	$(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$		(+1, 1)	(+4/3, 3)	(+1/3, 3)	
0:1	(=)(=)()(=)	(1-)	(+1,8)	(+4/3, 3)	(+1/3, 3)	DDV [FS co] LO [cf cc]
2-1-0	(ua)(e)(a)(ue)	(D)	(+1, 1) (+1, 8)	(0, 1)	$(\pm 1/3, 3)$ $(\pm 1/3, 3)$	RPV [58-00], LQ [65,00]
2-ii-a	$(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$		(+1, 0) (+1, 1)	(+5/3, 3)	(+2/3, 3)	
	(/(-/(-/(/		(+1,8)	(+5/3, 3)	(+2/3, 3)	
2-ii-b	$(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$	(b)	(+1, 1)	(0,1)	(+2/3, 3)	RPV [58–60], LQ [65, 66]
			(+1, 8)	(0,8)	(+2/3, 3)	
2-iii-a	$(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$	(c)	(-2/3, 3)	(0, 1)	(+1/3, 3)	RPV [58–60]
0.001	()=)()(=)(==)		(-2/3, 3)	(0,8)	(+1/3, 3)	RPV [58–60]
2-111-0	(ae)(a)(u)(ue)		(-2/3, 3) (-2/3, 3)	(-1/3, 3) (-1/3, 6)	$(\pm 1/3, 3)$ $(\pm 1/3, 3)$	
3-i	$(\bar{\eta}\bar{\eta})(\bar{e})(\bar{e})(dd)$		(-2/3, 3) (+4/3, 3)	(-1/3, 0) (+1/3, 3)	(-2/3, 3)	only with V_{c} and V'_{c}
	(44)(6)(6)(44)		(+4/3, 6)	(+1/3, 6)	(-2/3, 6)	Sing the top and top
3-ii	$(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$		(+4/3, 3)	(+5/3, 3)	(+2, 1)	only with V_{ρ}
			(+4/3, 6)	(+5/3, 3)	(+2, 1)	
3-iii	$(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$		(+2/3, 3)	(+4/3, 3)	(+2, 1)	only with V_{ρ}
	()->/->/)->		(+2/3, 6)	(+4/3,3)	(+2,1)	DDI [50 col
4-1	(de)(u)(u)(de)	(c)	(-2/3, 3) (-2/3, 3)	(0,1)	$(\pm 2/3, 3)$	RPV [58-60]
4-11-9	$(\bar{\eta}\bar{\eta})(d)(\bar{e})(d\bar{e})$		(-2/3, 3) (+4/3, 3)	(+5/3, 3)	$(\pm 2/3, 3)$ $(\pm 2/3, 3)$	only with V
	(44)(4)(6)(46)		(+4/3, 6)	(+5/3, 3)	(+2/3, 3)	see Sec. 4 (this work)
4-ii-b	$(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$		(+4/3, 3)	(+1/3, 3)	(+2/3, 3)	only with V_{ρ}
			(+4/3, 6)	(+1/3, 6)	(+2/3, 3)	
5-i	$(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$	(c)	(-1/3, 3)	(0, 1)	(+1/3, 3)	RPV [58–60]
	/		(-1/3, 3)	(0,8)	(+1/3, 3)	RPV [58-60]
5-11-a	$(u\bar{e})(\bar{u})(\bar{e})(dd)$		(-1/3, 3)	(+1/3, 3)	(-2/3, 3)	only with V_{ρ}
5-ii-b	$(\bar{\eta}\bar{e})(\bar{e})(\bar{\eta})(dd)$		(-1/3, 3) (-1/3, 3)	(+1/3, 0) (-4/3, 3)	(-2/3, 0) (-2/3, 3)	only with V'
0-11-0	(ae)(e)(a)(aa)		(-1/3, 3)	(-4/3, 3)	(-2/3, 6)	only when v _p
5-ii-a 5-ii-b	$(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$ $(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$		(-1/3, 3) (-1/3, 3) (-1/3, 3) (-1/3, 3)	$(+1/3, \overline{3})$ (+1/3, 6) (-4/3, 3) (-4/3, 3)	$(-2/3, \overline{3})$ $(-2/3, \overline{6})$ $(-2/3, \overline{3})$ $(-2/3, \overline{6})$	only with V'_{ρ} only with V'_{ρ}

[Bonnet et al (2013)]

$0\nu\beta\beta$ decay in minimal scalar-vector models

\succ	With p decay			ology	[]: [Bonnet e	et al (2013)]	
		Media	ator $(Q_{ m em},Q$	colour)				
#	Decomposition	$S ext{ or } V_{ ho}$	S' or $V'_{ ho}$	S'' or $V''_{ ho}$	Models/Refs./Cor	mment	S	
1	$(ar{u}d)(ar{u}d)(ar{e}ar{e})$	(+1, 1)	(+1, 1)	(-2, 1)	Addl. triplet scala	ar [69]		Šv ₃
					LR-symmetric mo	odels [4	40, 42]	
		(+1, 8)	(+1, 8)	(-2, 1)				
2	$(ar{u}d)(ar{u}ar{e})(ar{e}d)$	(+1, 1)	(-1/3, 3)	(-2/3, 3)				
		(+1, 8)	(-1/3, 3)	(-2/3, 3)				
3	$(ar{u}ar{u})(dd)(ar{e}ar{e})$	(+4/3, 3)	(+2/3, 3)	(-2, 1)	only with $V_{ ho}$ and	$V'_{ ho}$		Topology II
		(+4/3, 6)	(+2/3, 6)	(-2, 1)				
4	$(ar{u}ar{u})(ar{e}d)(ar{e}d)$	(+4/3, 3)	(-2/3, 3)	(-2/3, 3)	only with $V_ ho$			
2		(+4/3, 6)	(-2/3, 3)	(-2/3, 3)				
5	$(ar{u}ar{e})(ar{u}ar{e})(dd)$	(-1/3, 3)	(-1/3, 3)	(+2/3, 3)	only with V''_{ρ}			
		(-1/3, 3)	(-1/3, 3)	(+2/3, 6)	[70,71]		_	
*	Without p decay Surviving decomposition & possible models:							
#	Decompos	ition 2	S or V	S' or V'	S'' or V''		#1:	$V_7^{\mu}V_{7\mu}X_1^+, V_6^{\mu}V_{7\mu}X_3^+$
1	$(\bar{u}d)(\bar{u}d)($	$(\bar{e}\bar{e})$	$(1,1)_{-}$	$(1,1)_{-}$	(2, 1)		#3:	$V_4^{\mu}V_{5\mu}^+X_3, V_3^{\mu}V_{5\mu}^+X_8, V_4^{\mu}V_{3\mu}X_7^+,$
3	$(ar{u}ar{u})(dd)($	$(\bar{e}\bar{e})$ (-	$-4/3, \bar{6})$	$(+2/3,\bar{6})$) (+2,1)			$X_1 X_0 X_7^+, X_3 X_4 X_7^+, X_3 X_0 X_4^+$
4	$(\bar{u}\bar{u})(\bar{e}d)($	$(\bar{e}d)$ (-	$-4/3, \bar{6})$	(+2/3, 3)) (+2/3,3)		#1.	$V^{\mu}V_{\mu}V_{\mu}$
				-			# 4 .	^V 9 ^V 9µ^8

[Susan Gardner and X. Y. (2018)]

$0\nu\beta\beta$ decay in minimal scalar-vector models

✤ Without p decay

Topology I:

#	Decomposition	$S \ {\rm or} \ V$	ψ	S^\prime or V^\prime	
1-i	$(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$	(1, 1)	(0, 1)	(1, 1)	$V - \psi - V$
1-ii-a	$(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$	(1, 1)	(+5/3, 3)	(+2,1)	
1-ii-b	$(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$	(1, 1)	$(+4/3, \bar{3})$	(+2, 1)	
2-ii-a	$(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$	(1, 1)	(+5/3, 3)	(+2/3,3)	$v - \psi - v, v - \psi - s$
2-ii-b	$(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$	(1, 1)	(0, 1)	(+2/3, 3)	
3-i	$(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$	$(-3/4, \bar{6})$	(+1/3, 6)	$(+2/3,\bar{6})$	
3-ii	$(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$	$(-3/4, \bar{6})$	(+5/3, 3)	(+2, 1)	$V - \psi - V, V - \psi - S,$
3-iii	$(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$	$(+2/3, \bar{6})$	$(+4/3, \bar{3})$	(+2,1)	$S-\psi-V$, $S-\psi-S$
4-i	$(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$	(+2/3, 3)	(0, 1)	(+2/3,3)	
		(+2/3, 3)	(0, 8)	(+2/3,3)	$V - \psi - V$
4-ii-a	$(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$	$(-3/4, \bar{6})$	(+5/3, 3)	(+2/3,3)	$V - \psi - V, S - \psi - V, S - \psi - S$
4-ii-b	$(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$	$(-3/4, \bar{6})$	(+1/3, 6)	(+2/3, 3)	\longrightarrow $S-\psi-V, S-\psi-S$

[S. Gardner and X. Y. (2018)]

Quark level $n - \bar{n}$ oscillation

> There are 4 independent quark level $n - \bar{n}$ oscillation operators that respect SM gauge symmetry:

$$(O_1)_{RRR}, (O_2)_{RRR}, (O_3)_{LRR}, (O_3)_{LLR}$$

[Rao and Shrock (1982) W. Caswell et al (1983) M. Buchoff et al (2012)]

□ Note: M1 yields the operator $(\mathcal{O}_2)_{RRR}$, M2 yields $(\mathcal{O}_3)_{LLR}$, M3 yields $(\mathcal{O}_1)_{RRR}$.

Quark level
$$n - \bar{n}$$

oscillation operators
with SU(3) \otimes U_{em}(1).
$$\begin{bmatrix} (O_1)_{\chi_1\chi_2\chi_3} = [u_{\chi_1}^{\top \alpha} C u_{\chi_1}^{\beta}][d_{\chi_2}^{\top \gamma} C d_{\chi_2}^{\delta}][d_{\chi_3}^{\top \rho} C d_{\chi_3}^{\sigma}](T_s)_{\alpha\beta\gamma\delta\rho\sigma}, \\ (O_2)_{\chi_1\chi_2\chi_3} = [u_{\chi_1}^{\top \alpha} C d_{\chi_1}^{\beta}][u_{\chi_2}^{\top \gamma} C d_{\chi_2}^{\delta}][d_{\chi_3}^{\top \rho} C d_{\chi_3}^{\sigma}](T_s)_{\alpha\beta\gamma\delta\rho\sigma}, \\ (O_3)_{\chi_1\chi_2\chi_3} = [u_{\chi_1}^{\top \alpha} C d_{\chi_1}^{\beta}][u_{\chi_2}^{\top \gamma} C d_{\chi_2}^{\delta}][d_{\chi_3}^{\top \rho} C d_{\chi_3}^{\sigma}](T_s)_{\alpha\beta\gamma\delta\rho\sigma}, \\ (T_s)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\rho\alpha\gamma}\epsilon_{\sigma\beta\delta} + \epsilon_{\sigma\alpha\gamma}\epsilon_{\rho\beta\delta} + \epsilon_{\rho\beta\gamma}\epsilon_{\sigma\alpha\delta} + \epsilon_{\sigma\beta\gamma}\epsilon_{\rho\alpha\delta} \\ (T_s)_{\alpha\beta\gamma\delta\rho\sigma} = \epsilon_{\rho\alpha\beta}\epsilon_{\sigma\gamma\delta} + \epsilon_{\sigma\alpha\beta}\epsilon_{\rho\gamma\delta}. \end{bmatrix}$$
[Rao and Shrock (1982)]

Cross Section Estimate Experimental limits can be translated to scalar-mass-coupling exclusion plots (cf. dark photons!)

scalar couplings [4, 56–59]. Models that support $e^-p \rightarrow e^+\bar{p}$ have low-energy operators whose quark parts correspond to those found in $n - \bar{n}$ oscillations under $u \leftrightarrow d$ exchange. Exploiting this and a MIT bag model [60, 61] computation of $\langle \bar{n} | (\mathcal{O}_1)_{RRR} | n \rangle$ [46, 62] yields

$$\sigma \sim 1.5 \times 10^{-5} (g_7^{11})^6 (\lambda_8 g_1^{11})^2 \left(\frac{5 \,\mathrm{GeV}}{M_{X_7}}\right)^{12} \left(\frac{1 \,\mathrm{GeV}}{M_{X_1}}\right)^4 \mathrm{ab}$$
 (6)

in model M8 for an electron beam energy of 155 MeV with a fixed target [63]. A broad range of possible scalar masses and couplings exists.

[SG & Xinshuai Yan, arXiv: 1808.05288]

Estimate event number

Fixed target experiment:

$$\frac{dN}{dt} = \mathcal{L}\sigma = \phi \rho_T L \sigma$$

$$N \sim 1.4 \times 10^2 \frac{\mathrm{t}}{1 \mathrm{yr}} \frac{\phi}{0.6 \times 10^{17} \mathrm{s}^{-1}} \frac{L}{1 \mathrm{m}} \frac{\rho}{5.1 \times 10^{22} \mathrm{cm}^{-3}} \frac{\sigma}{1.5 \times 10^{-5} \mathrm{ab}}.$$

- t denotes experiment running time, L is the length of liquid deuterium target at 19K with number density ρ .
- ϕ is the flux of electron beam(Dark Light exp. at Jlab)

Dim 5 and 7 proton decay

Operator	$SU(3)_c$	${ m SU}(2)_L$	$U(1)_Y$	p decay
$\overline{O}^{c} \alpha^{\mu} \alpha = V$	3	2	-5/6	tree-level
$Q_L \gamma^r u_R v_\mu$	<u></u> 6	2	-5/6	_
$\overline{O}^{c} \alpha^{\mu} d V$	3	2	1/6	tree-level
$Q_L \gamma^{-} a_R V_{\mu}$	<u></u> 6	2	1/6	-
$\overline{Q}_L \gamma^\mu L_L V_\mu$	3	1,3	2/3	dim 5
$\overline{Q}^c_L \gamma^\mu e_R V^*_\mu$	3	2	-5/6	tree-level
$\overline{L}^c_L \gamma^\mu u_R V^*_\mu$	3	2	1/6	tree-level
$\overline{L}^c_L \gamma^\mu d_R V^{\star}_\mu$	3	2	-5/6	tree-level
$\overline{u}_R \gamma^\mu e_R V_\mu$	3	1	5/3	dim 7
$\overline{d}_R \gamma^\mu e_R V_\mu$	3	1	2/3	dim 5

Assad, Fornal, Grinstein (2018)

FIG. 2. Proton decay through a dimension five interaction for $V = (3, 1)_{\frac{2}{3}}$ and $V = (3, 3)_{\frac{2}{3}}$.