Direct Neutrino Mass Measurements

(with emphasis on KATRIN)

Sanshiro Enomoto (University of Washington) for the KATRIN Collaboration

Direct Measurement Using Kinematics Only

Methods to measure Neutrino Mass

Model Independent Direct Measurement

Direct Measurement Using Weak Decays

Wish List for Direct Measurements

low end-point

 \rightarrow relatively large spectrum deformation

short life

- \rightarrow small source amount / less scattering in source
- (super) allowed transition \rightarrow matrix element reliably calculable
- simple molecular → molecular states calculable
- high isotopic purity
- source stability
- established procurement
- \Rightarrow Only two isotopes of choice:

Neutrino Mass Measurements with Weak Decays

Beta Decay (Tritium)

Electron Capture (Holmium)

Electron Spectrum

0.0 0.5

1.0 1.5

2.0

Energy / keV

2.5 3.0

2.76 2.77

2.78

2.79

Energy / keV

2.80 2.81

Weak Decay Spectroscopy

Electron Spectroscopy with Electro-Static Filter

 \rightarrow guiding magnetic field

Electron Spectroscopy with Electro-Static Filter

Electron Spectroscopy with Electro-Static Filter

MAC-E (Magnetic-Adiabatic-Collimation Electro-static) Filter

Adiabatic Transmission (constant magnetic moment)

$$\mu = \frac{E_{\perp}}{B} = \text{const}$$

electron

Energy resolution is determined by B-Ratio

ΔE _	<i>B</i> _{min}
E	$\overline{B_{\max}}$

Present Mass Limit and KATRIN Experiment

Mainz (2005, final result) m(ν_{e}) < 2.3 eV (95%CL)

Triosk (2011, re-analysis) m(ν_{e}) < 2.05 eV (95%CL)

KATRIN

design sensitivity: m(ν_{e}) < 0.2 eV (90%CL)

sensitivity 1/10 on m_e

- \Rightarrow sensitivity 1/100 on m_e²
- \Rightarrow x100 statistics, 1/100 systematics

KATRIN Experiment

KArlsruhe TRItium Neutrino Experiment

- located at Karlsruhe Institute of Technology, Karlsruhe, Germany
- design sensitivity: $m(v_e) < 0.2 \text{ eV}$ (90%CL, 3 years)

14U2 1 U2 14U2 14U2

Oct 2016: KATRIN "First Light" (just before DBD16)

- Adiabatic transmission throughout beamline
 Beam steering with electrodes
- \checkmark lon blocking tests

Jul 2017: Krypton Campaign

Jul 2017: Krypton Campaign

- Repeated scans of L3-32 line (30.47 keV) over a week
- Demonstrates stability of KATRIN energy scale

Jun 2018: "The Very First Tritium"

Jun 2018: KATRIN "Inauguration"

Successful start of long-term tritium data taking

operation room, official photo

First Tritium Highlights: Source Stability

WGTS Temperature

First Tritium Highlights: Spectrum Fitting

Free Parameters:

- End-point energy
- Normalization
- Backgrounds
- $m_{\!\nu}$ is fixed to zero

- Single 3-hour run
- Statistical errors only
- Works on-going: Correlations on systematics
 - combining runs, pixels
 - drifting quantities

De∨iance: 11.44 @ 17 dof ⇒ 83.28%

First Tritium Highlights: End-point Stability

Estimated end-point energies over measurement period (72 scans in 5.3 days)

Estimated end-point energies for each pixel

KATRIN Error Budget

(KATRIN Design Report 2004)

Oct 2018: Source Section Characterization

- Characterize ion creation, detection ad blocking
- Measure inelastic scattering energy-loss

Going Further

(in case KATRIN does not see anything...)

Improving Statistics / Resolution / Backgrounds

Source column-density is already at maximum

- Only possible extension is source pipe diameter
- Spectrometer diameter scales

Improving Systematics

Final state uncertainty limits the sensitivity

Going Further

(in case KATRIN does not see anything...)

Improving Statistics / Resolution / Backgrounds

Improving Systematics

Final state uncertainty limits the sensitivity

Source column-density is already at maximum

- Only possible extension is source pipe diameter
- Spectrometer diameter scales

KATRIN Differential-Mode

- MAC-E Time-of-Flight
- MAC-E + End-point Bolometer

No Electron Extraction

- Calorimetry
- Cyclotron Radiation Detection

Improve FS Understanding No Molecular Tritium

Weak Decay Spectroscopy

Project 8: Cyclotron Radiation Emission Spectroscopy

$$f = \frac{f_0}{\gamma} = \frac{1}{2\pi} \frac{eB}{m_e + E_{\text{kin}}/c^2}, \qquad P = \frac{2\pi e^2 f_0^2}{3\epsilon_0 c} \frac{\beta^2 \sin^2 \theta}{1 - \beta^2}$$

for E =18.6 keV in B = 1 T, θ = 90°
 $\Rightarrow \sim 1 \text{ fW} @ \sim 26 \text{ GHz}$
 $\Delta f = 1/\tau$
several us $\Leftrightarrow \Delta E \sim 1 \text{ eV}$

Proof-of-principle, single electron detection form Krypton

(G. Rybka, Neutrino 2018)

Project 8: Phased Approach (G. Rybka, Neutrino 2018)

Phase 2: Electrons from Tritium

Record continuous spectrum $\rm m_{\nu}$ ~ 10 .. 100 eV

Phase 3: Large Volume

Antenna array, interferometry to localize m_{ν} ~ 2 eV

Project 8: Sensitivity with Atomic Tritium

ECHO & HOLMES (L. Gastaldo, Neutrino 2018)

Calorimetry for EC De-excitation

- Source inside / contact to detector
- No molecular final states

Metallic Magnetic Calorimeters (MMC)

Magnetization of para-magnetic material $\delta T \Rightarrow \delta M$ **ECHO** Μ absorber SQUID thermal link thermal bath

Transition Edge Sensors (TES)

Resistance at super-conducting transition

ECHo & HOLMES: Challenges and Goals

(L. Gastaldo, Neutrino 2018 / G. Drexlin, NOW 2018)

- Energy resolution:
- Statistics sub-eV sensitivity:
- Small pile-up fraction:
- Background level:

 $\Delta E < 2 \sim 3 \text{ eV}$

 $N_{ev} > 10^{14} \Rightarrow A = 1 \sim 10 MBq$

 $f_{pu} < 10^{-6} \Rightarrow \tau < 1 \ \mu s$ and 10^{6} pixels

< 10⁻⁵ events/eV/pixel/day

10

sensitivity

ECHo & HOLMES: Achievements and Status

(L. Gastaldo, Neutrino 2018)

ECHO

- 5 Bq/pixel chip
- 60 produced

- 300 Bq/pixel chip
- 1000 produced

5.92

ECHo and HOLMES: Sensitivity and Plans

(L. Gastaldo, Neutrino 2018 / G. Drexlin, NOW 2018)

2015-2018: ECHo 1k

- 5 Bq / pixel \times 60 pixels
- 1 year
- m_{ν} sensitivity: 10 eV

2018-2021: ECHo 100k

- 10 Bq / pixel × 12,000 pixels
- 3 years
- m_{ν} sensitivity: 1.5 eV

2021-2027: ECHo 1M

- 1 M pixels (10 MBq)
- m_v sensitivity: 0.3 eV

HWLMES

(B. Alpert et al, Eur. Phys. J. C (2015) 75:112)

2013-2018: Proof-of-concept

- 300 Bq/pixel × 64 pixels
- 1 month
- m_{ν} sensitivity: 10 eV

2019~: Full scale

- 300 Bq/pixel \times 1000 ch
- 3 years
- m_v sensitivity: 1 eV

Conclusions

Direct Measurement with Weak Decay Kinematics

- Model independent
- Current limit: 2 eV (Mainz & Triosk)

KATRIN

- 0.2 eV sensitivity (90% CL) in 3 years
- Construction completed
- Excellent performance in commissioning runs

Going Further

- To overcome: statistics & molecular final-state uncertainty
- Next Generation Projects:

- Cyclotron Radiation Spectroscopy, Atomic Tritium
 - Single electron detection demonstrated

EC on ¹⁶³Ho and Calorimetry

- >MBq ¹⁶³Ho produced, technology demonstrated
- Currently ~10 eV sensitivity, pushing down

KATRIN Collaboration

- ~130 Collaborators
- 18 Institutions
- 6 Countries
 - DE, US, CZ, RU, UK, FR

