Review of Sterile Neutrino Searches

Takasumi Maruyama (KEK)

Sterile neutrinos

- Sterile neutrinos could give an insight for the questions beyond the standard model;
 - (E.g.; PLB 631, 151 (2005))
 - No strong, electro-magnetic, weak interactions.
 - Introduced to explain both results of LSND and LEP experiments
 - Observed by mainly neutrino oscillations
 - Could be ν_{R} (Majorana) or new particle
 - Beyond PMNS matrix oscillation
 - LSND, MiniBooNE, reactors, Ga experiments indicate the existence.
- Sterile neutrino could be also one of the Dark Matter candidate?

indication of the sterile neutrino ($\Delta m^2 \sim 1 eV^2$) ?

 Anomalies, which cannot be explained by standard neutrino oscillations for ~20 years are shown;

Experiments	Neutrino source	signal	significance	E(MeV),L(m)
LSND	μ Decay-At-Rest	$\overline{\nu}_{\mu} \rightarrow \overline{\nu_{e}}$	3.8σ	40,30
MiniBooNE	π Decay-In-Flight	$\nu_{\mu} \rightarrow \nu_{e}$	4.5σ	800,600
		$\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$	2.8σ	
		combined	4.8σ	
Ga (calibration)	e capture	$v_e \rightarrow v_x$	2.7σ	<3,10
Reactors	Beta decay	$\overline{v}_{e} \rightarrow \overline{v}_{x}$	3.0σ	3,10-100

- Excess or deficit does really exist?
- The new oscillation between active and inactive (sterile) neutrinos?

Neutrino oscillations with $\Delta m^2 \sim 1 eV^2$ region

Appearance

LSND $\overline{\nu}_{m} \rightarrow \overline{\nu}_{e}$ Signal

1998 at LANL

1.4

 π^-, μ^- absorbed before decay into v's there should not be \overline{ve} at the level of $7x10^{-4}$

Signal :
$$\overline{ve} p \rightarrow e^+ n np \rightarrow d\gamma(2.2 MeV)$$

With an oscillation probability of $(0.264 \pm 0.067 \pm 0.045)\%$.

3.8 S evidence for oscillation.

MiniBooNE latest results

- Significant low energy events excess (4.5 σ)
- They claim that the excess is due to the same oscillation observed at the LSND.
- Concerns are
 - Systematic uncertainties (neutrino interactions, background understandings)
 - Especially, unknown single gamma production events may cause this.
- MicroBooNE can check the excess due to the gamma ray events or electron antineutrinos.

v_e disappearance in reactor and β -source

The Reactor Antineutrino Anomaly NEUT

Chris Polly, Thierry Lasserre NEUTRINO2012

v_e disappearance w/ reactors

유부분물할

Experiment	Reactor Power/Fuel	Overburden (mwe)	Detection Material	Segmentation	Optical Readout	Particle ID Capability
DANSS (Russia)	3000 MW LEU fuel	~50	Inhomogeneous PS & Gd sheets	2D, ~5mm	WLS fibers.	Topology only
NEOS (South Korea)	2800 MW LEU fuel	~20	Homogeneous Gd-doped LS	none	Direct double ended PMT	recoil PSD only
nuLat (USA)	40 MW 235U fuel	few	Homogeneous ⁶ Li doped PS	Quasi-3D, 5cm, 3-axis Opt. Latt	Direct PMT	Topology, recoil & capture PSD
Neutrino4 (Russia)	100 MW 235 U fuel	~10	Homogeneous Gd-doped LS	2D, ~10cm	Direct single ended PMT	Topology only
PROSPECT (USA)	85 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li-doped LS	2D, 15cm	Direct double ended PMT	Topology, recoil & capture PSD
SoLid (UK Fr Bel US)	72 MW 235 U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm multiplex	WLS fibers	topology, capture PSD
Chandler (USA)	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm, 2-axis Opt. Latt	Direct PMT/ WLS Scint.	topology, capture PSD
Stereo (France)	57 MW 235 U fuel	~15	Homogeneous Gd-doped LS	1D, 25cm	Direct single ended PMT	recoil PSD

Recently, they have results.

v_e disappearance

• Summary of the recent results so far. (exciting!)

• Except for the neutrino-4 experiment, reactor experiments show the null results.

Current situation / what experimentalists should do

- 3+1 oscillation model cannot explain all phenomena from various experiments. (especially, disappearance measurements (v_µ→v_µ and v_e→v_e :except for Neutrino-4) and appearance ones have a tension.)
- If all are true, we absolutely need new physics model.
- Or experimental data is something wrong?? This part is being and will be examined by experimentalists.
 - MicroBooNE (running) / SBN (SBND+MicroBooNE+ICARUS) for Mini-BooNE anomaly
 - JSNS² for the LSND experiment
 - Many reactor experiments are on-going, thus they can check further.

SBN Program Layout

Peter Wilson's talk @ WINP workshop

Liquid Argon TPC

- Principle
 - Quasi-free electrons from ionized tracks are drifted.
 - Charge (MIP)~1fC/mm (~5500e/mm)
 - drift velocity = 2m/ms @ 1kV/cm
 - Position information from2D (x,y) anode and timing → 3D tracking w/ 1mm resol.
 - No amplification from LAr (different from Gas Ar)
- Features
 - LAr is cheap and high density material
 - LAr TPC has high tracking efficiency
 - Low energy threshold
 - PID by local dE/dx (each wire or strip)
 - Full sampling and homogeneous calorimeter
- Advantages for physics
 - Multi-track meas. -> exclusive meas,
 - Calorimetric energy measurement. (elastic events selection is unneeded.)
 - Good $e/\pi 0$ separation

KEK LAr Group has own R&D activity independent from US/EU

SBN We Appearance Sensitivity Peter Wilson's talk @ WINP workshop

Compared to MiniBooNE, there is no π 0 background events

MicroBooNE is running, and ICARUS is now at FNAL. (SBN will start from 2020) ν_e analysis

One of our first analyses focuses on the signal most similar to the MiniBooNE $CC0\pi$ definition: 1 electron + N protons Example of data events selected

Status of ICARUS

Pictures from Yun-Tse Tsai's slide in NuFACT2018 conference (Aug-18) (commissioning will be started soon, and data taking will be started by 2019-Sep)

JSNS2 (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source)

Collaboration meeting @ J-PARC (2018/Jul)

JSNS² collaboration (58 collaborators)

- 6 Japanese institutions (28 members)
- 10 Korean institutions (20 members)
- 1 UK institution (3 members)
- 5 US institutions (7 members)

Direct tests for LSND.

Technical Design Report (TDR): Searching for a Sterile Neutrino at J-PARC MLF (E56, JSNS²)

S. Ajimura¹, M. K. Cheoun², J. H. Choi³, H. Furuta⁴, M. Harada⁵, S. Hasegawa⁵, Y. Hino⁴, T. Hiraiwa¹, E. Iwai⁶, S. Iwata⁷, J. S. Jang⁸, H. I. Jang⁹, H. K. Jeon¹⁰, S. H. Jeon¹⁰, K. K. Joo¹¹, J. R. Jordan⁶, S. K. Kang¹², T. Kawasaki⁷, Y. Kasugai⁵, E. J. Kim¹³, J. Y. Kim¹⁰, S. B. Kim¹⁴, W. Kim¹⁵, K. Kuwata⁴, E. Kwon¹⁴, I. T. Lim¹¹, T. Maruyama^{*16}, S. Meigo⁵, S. Monjushiro¹⁶, D. H. Moon¹¹, T. Nakano¹, M. Niiyama¹⁷, K. Nishikawa¹⁶, M. Nomachi¹, M. Y. Pac³, J. S. Park¹⁶, S.J.M. Peeters¹⁸, H. Ray¹⁹, C. Rott¹⁰, K. Sakai⁵, S. Sakamoto⁵, H. Seo¹⁴, S. H. Seo¹⁴, A. Shibata⁷, T. Shima¹, J. Spitz⁶, I. Stancu²⁰, F. Suekane⁴, Y. Sugaya¹, K. Suzuya⁵, M. Taira¹⁶, T. Torizawa⁷, J. Waterfield¹⁸, R. White¹⁸, M. Yeh²¹, and I. Yu¹⁰

¹Research Center for Nuclear Physics, Osaka University, Osaka, JAPAN ²Department of Physics, Soonasil University, Seoul 06978, KOREA ³Department of Radiology, Dongshin University, Chonnam 58245, KOREA ⁴Research Center for Neutrino Science, Tohoku University, Sendai, Miyaqi, JAPAN ⁵J-PARC Center, JAEA, Tokai, Ibaraki JAPAN ⁶University of Michigan, Ann Arbor, MI, 48109, USA ⁷Department of Physics, Kitasato University, Sagamihara 252-0373, Kanagawa, JAPAN ⁸Gwangju Institute of Science and Technology, Gwangju, 61005, KOREA ⁹Department of Fire Safety, Seoyeong University, Gwangju 61268, KOREA ¹⁰Department of Physics, Sungkyunkwan University, Suwon 16419, KOREA ¹¹Department of Physics, Chonnam National University, Gwangju, 61186, KOREA ¹²School of Liberal Arts, Seoul National University of Science and Technology, Seoul, 139-743, KOREA ¹³Division of Science Education, Physics major, Chonbuk National University, Jeonju, 54896, KOREA ¹⁴Department of Physics and Astronomy, Seoul National University, Seoul 08826, KOREA ¹⁵Department of Physics, Kyungpook National University, Daegu 41566, KOREA ¹⁶High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, JAPAN ¹⁷Department of Physics, Kyoto University, Kyoto, JAPAN ¹⁸Department of Physics and Astronomy, University of Sussex, Brighton, UK ¹⁹University of Florida, Gainesville, FL, 32611, USA ²⁰University of Alabama, Tuscaloosa, AL, 35487, USA ²¹Brookhaven National Laboratory, Upton, NY, 11973-5000, USA

February 13, 2018

J-PARC MLF: World best environment

Searching for neutrino oscillation : $\overline{v_{\mu}} \rightarrow \overline{v_{e}}$ with baseline of 24m. no new beamline, no new buildings are needed \rightarrow quick start-up

Timing and Energy

M. Harada *et al*, arXiv:1310.1437 Next beam is 40ms later p timing 80 ns Selecting muon decay ε~74%) ν total from μ

Timing and Energy are friends of JSNS²

- \succ Timing: Ultra-pure v from μ^+ Decayat-Rest
 - \blacktriangleright v from π and K -> removed with timing
 - Beam Fast neutrons -> removed w/ time
 - \blacktriangleright Cosmic ray BKG -> reduced by 9µs time window.
- > Energy: signals / BKG separation by energy.
 - \succ v from μ has well-known spectrum.
 - \succ Energy reconstruction is very easy at the IBD. ($Ev \sim Evis + 0.8MeV$)
 - \succ v from μ is high suppressed.

Sensitivity of JSNS²

Achievements so far

- 2013 Sep; A proposal was submitted to the J-PARC PAC
- 2014 Apr-Jul; We measured the BKG rate on 3rd floor.
 -> manageable beam /cosmic BKGs to perform JSNS²
 PTEP 2015 6, 063C01 / arXiv:1502.02255
- 2014-Dec; The result was reported to J-PARC PAC.
 → the stage-1 status was obtained from J-PARC /KEK
- The performance check of detector and safety discussions are being performed.
- 2016-June: The grant-in-aid is approved for one detector construction
- 2017-May: Technical Design Report was submitted to J-PARC PAC and arXiv (arXiv:1705.08629 [physics.ins-det])
- 2018-Sep: The stage-2 (real go-sign for experiment) was recommended by PAC.
- We aim to start JSNS² in JFY2018, the detector construction is on-going.

Overall schedule

We eager to start the experiment within this JFY to have good competitions, especially to SBN

Stainless tank construction

- Construction at J-PARC (2017/Dec 2018/Jan)
- Welding, water leak test was done on Feb.
- L-type angles, stainless plates were welded to the tank to install PMTs and acrylic tank. (bottom-right picture)
- This tank was moved from the construction place to installation building.

Current status (1)

- Cleaning inside of detector was done with pure water and ethanol.
- All pieces of materials were cleaned with ultra-sonic machine with ethanol.
- Installation of PMT support structure and reflector sheet was done.
- Installation of optical separator was done.
- PMTs will be ready in the same timescale with the acrylic tank.

PMT installation

PMT

Current status

Current status (2)

- Currently, an acrylic tank and the pure-LS are being produced.
- Gd loaded LS (GdLS) will be donated by Daya-Bay experiment. (now at custom work)
- A lot of other hardware / software are in

progress.

LS production @ Korea (RENO site) 21 batches in total (37000 L:) - 4 persons / day (shift) - 2 of ISO tanks

Acrylic tank production @ Taiwan (Nakano)

NRSU 421198

Summary

- Confirming or refuting the existence of "Sterile Neutrino" is one of hottest topics in the neutrino community in this 20 years.
- Many experiments are on-going or planned.
 - There are a lot of interesting results from reactor experiments.
 - Also v_{μ} disappearance experiments.
 - Currently, results from disappearance experiments (except for Neutrino-4) and results from LSND / MiniBooNE have a tension.
- SBN will start taking data soon. (including the running μBooNE experiment)
- JSNS2 experiment aims to start the experiment from JFY2018. This experiment is a direct ultimate test for the LSND anomaly without any excuses. (same neutrino source and neutrino target but improve S/N by more than 100 and systematics)
- New appearance experiments will have results soon. Enjoy!!

backup

Production / Detection

- Large amount of parent μ + in Hg target $\rightarrow \overline{v}_{\mu}$ are produced.
- If sterile v exist, $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ oscillation is happened with 24m.

#events (1MW x 3 years x 1 detector (17tons))

Source	contents	#ev.(17tons x 3years)	Reference : SR2014 (50tons x 5 years)	comments
background	v_e from μ -	43	237	Dominant BKG
	¹² C(v _e ,e-) ¹² N _{g.s.}	3	16	
	Beam fast neutrons	Consistent with 0 < 2 (<u>90%CL UL</u>)	<13	Based on real data
	Fast neutrons (cosmic)	~0	37	
	Accidental	20	32	Based on real data
signal		87	480	Δm^2 =2.5, sin ² 2 θ =0.003
		62	342	Δm^2 =1.2, sin ² 2 θ =0.003

Accidental BKG is calculated by; R acc = $\Sigma R_{prompt} \times \Sigma R_{delay} \times \Delta_{VTX} \times N_{spill}$

- ΣR_{prompt} , ΣR_{delay} are probability of accidental BKG for prompt and delayed.
- $\Delta_{\rm VTX}$; BKG rejection factor of **50**.
- N_{spill} (#spills / 5 years) = 1.9x10⁹

Energy Spectrum and Sensitivity

- Left: Energy spectrum; (Top: $\Delta m2=2.5eV^2$, Bottom; 1.2eV² sin²2 θ = 0.003)
- Right: Sensitivity of 3 years physics running of JSNS2 with **one detector.**
- We aim to start the one detector running from the end of JFY2018, and meanwhile we also try to obtain budget for the second detector.

Movement to assembly building (2018/Mar/14)

Tank was put on the low bed Trailer

Around accelerator control building

Around Assembly building

The tank was moved for almost 2.2km.

Assembly building

Other physics in JSNS²

JSNS² physics: Cross section measurements with monoenergetic muon neutrinos

Event rate expectation

[Detector (source)	Target (mass)	Exposure	Distance from source	236 MeV ν_{μ} CC events
[$JSNS^2$ (JPARC-MLF)	Gd-LS (50 ton)	1.875×10^{23} POT (5 years)	24 m	152000

Neutrino-nucleus interaction in Type-II SN

v-A interactions are important in

- core-cooling by ν -emission
- v-heating on shock wave
- v-process of nucleosynthesis
- efficiency of neutrino detectors

Reaction rates are to be known with accuracy better than ~10%!

Experiment	$\sigma(^{12}C(v_e,e^-)^{12}N_{g.s.}) (10^{-42} \text{ cm}^2)$
KARMEN (PLB332, 251 (1994))	9.1±0.5±0.8 (10.4%)
LSND (PRC64, 065501 (2001))	$8.9 \pm 0.3 \pm 0.9$ (10.7%)
JSNS ² (arXiv:1601.01046)	(~3%(stat.) expected in 5yrs)