

Searching for 0vββ with the EXO-200 Experiment -- Results and Prospects

Yale University

Qing (Shilo) Xia

On behalf of the EXO-200 Collaboration

¹³⁶Xe double beta decay spectrum

¹³⁶Xe 2νββ decay half life: Ref: Phys. Rev. C 89, 015502 (2014)

$$T_{1/2}(0\nu\beta\beta) \cong ?$$

$$T_{10/20/18} T_{1/2}(2\nu\beta\beta) = (2.165 \pm 0.016_{stat} \pm 0.059_{sys}) \cdot 10^{21} yr$$

$$0\nu\beta\beta$$
 decay rate $\Gamma = (T_{1/2}^{0\nu})^{-1} = G^{0\nu}|M^{0\nu}|^2|\frac{\langle m_{\beta\beta}\rangle}{m_e}|^2$

10²⁶

T_{1/2} 20 (yr) 10²⁵

 $10^{24}_{10^{24}}$

GERDA Sensitivity

KK&K 68% CL MID Sensitivity

- $G^{0\nu}$: phase space factor; $M^{0\nu}$: nuclear matrix element
- $\langle m_{\beta\beta} \rangle = \sum_i U_{ei}^2 m_i$: effective majorana mass

Current limits on $0\nu\beta\beta$ half-life of various isotopes

EXO-200: Phys.Rev.Lett.120,072701(2018) KamLAND-Zen: PRL 117 (2016) 082503 CUORE: Phys. Rev. Lett. 120, 132501 Skyrme QRPA: PRC 87, 064302 (2013)

QRPA: PRC 89, 064308 (2014)

10/20/18

EDF: PRL 105, 252503 (2010)

 $T_{1/2}$ 136 Xe (yr) EXO-200: Phys.Rev.Lett.120,072701(2018) GERDA: Phys. Rev. Lett. 120, 132503 Majorana: *Phys. Rev. Lett.* **120**, 132502 KamLAND-Zen: PRL 117 (2016) 082503 KK&K Claim: Mod. Phys. Lett., A21 (2006) 1547

 $10^{\overline{26}}$

10²⁵

EXO-200 at WIPP

Design of the EXO-200 detector

Charge and light energy deposit in the TPC

Energy resolution of the detector

- An incident particle generates both charge and light signals the detector
- The elliptical island in the 2D energy histogram below demonstrates the anticorrelation between charge and light energy deposition
- To optimize the energy resolution, we introduce a rotated energy $E_r = E_s \sin\theta + E_c \cos\theta$ (E_s is scintillation energy, E_c is ionization energy)

EXO-200 operation

Energy resolution vs. time

10/20/18 Energy resolution is improved from 1.4% to 1.2% after electronic upgrade

EXO-200 signal/background discrimination

- Topological classification provides good signal/background discrimination
- Electron-like signal events (e.g. $2v\beta\beta$) are predominantly single-sited, while gamma-like background events are mostly multi-sited

Improved analysis for Phase II

Multi-variate discriminator improves signal/background separation:

- Number of channels hit by the charge cluster
- Rise time of the charge pulse
- Standoff distance

Improved sensitivity by ~15%

Phys. Rev. Lett. 120, 072701 (2018)

Long rise time

Black dots $-2\upsilon\beta\beta$ data; Black lines $-2\upsilon\beta\beta$ MC;

Blue dots -226Ra data; Blue lines -226Ra MC.

Recorregion – MC of the expected BDT discriminator distribution for a $0v\beta\beta$ signal

Comparison between energy spectrum for Phase I and Phase II

EXO-200	Sensitivity	Limit, 90%CL
2012	$0.7 \times 10^{25} \text{ yr}$	$1.6 \times 10^{25} \text{ yr}$
2014	$1.9 \times 10^{25} \text{ yr}$	$1.1 \times 10^{25} \text{ yr}$
2018	$3.7 \times 10^{25} \text{ yr}$	$1.8 \times 10^{25} \text{ yr}$

Phys. Rev. Lett. 120, 072701 (2018)

Deep Neural Networks (DNN) for Charge Energy Reconstruction

- Monte Carlo simulation generates a large number of events for which the "true charge energy" is known.
- DNN extracts energy directly from 76 charge readout channels' waveform patterns.
- DNN reconstructs a better charge energy resolution than the standard EXO reconstruction method.

2018 JINST 13 P08023

Search for double beta decay of ¹³⁴Xe

$$^{134}Xe \rightarrow 134Ba^{++} + 2e^{-}(+2\bar{\nu}_{e})$$
 Q value = $825.8 \pm 0.9 keV$

 Results from EXO-200 measurement (Phys. Rev. D 96, 092001, 2017):

$$T_{1/2}^{2\nu\beta\beta}$$
 > 8.7×10²⁰ yr at 90% C.L.
(Theoretical value: ~10²⁴ – 10²⁵yr)

$$T_{1/2}^{0\nu\beta\beta} > 1.1 \times 10^{23} \ yr$$
 at 90% C.L.

Improved by factors of 10⁵ and 2 respectively compared to previous measurements.

Lower scintillation noise and reduced ⁸⁵Kr in Phase II will improve search sensitivity

Search for nucleon decay using EXO-200

- Searched for exotic nucleon decay with ΔB =3
- Tested at $\Lambda \sim 10^2$ GeV energy scale

$$ppp \rightarrow e^{+} + \pi^{+} + \pi^{+}$$

$$136 \text{Xe} \longrightarrow 133 \text{Te}$$

$$\beta \longrightarrow 133 \text{Sb}$$

$$133 \text{Sb}$$

$$\beta \longrightarrow 133 \text{MTe}$$

$$133 \text{MTe}$$

$$133 \text{MTe}$$

- Lifetime limits for 133 Sb: 3.3×10^{23} yr
- Lifetime limits for 133 Te: 1.9×10^{23} yr

Best-fit model for decay to 133 Sb:

Phys. Rev. D 97, 072007 (2018)

Exceeding the prior decay limits by a factor of 9 and 7, respectively
 ^{10/20/18}

Conclusion

- EXO-200 demonstrated the potential of monolithic / homogenous LXe detectors
- Detector sensitivity improved by a factor two $(1.9 \cdot 10^{25} \text{ yr in } 2014, 3.7 \cdot 10^{25} \text{ yr in } 2018)$

- $T_{1/2}^{0\nu\beta\beta}(^{136}Xe) > 1.8 \times 10^{25} \text{ yr, } \langle m_{\beta\beta} \rangle < (147 398) meV$
- Significant improvement in the measurement of triple nucleon decay half-life
- Final results will follow after the end of Phase II at the end of year
- R&D towards a tonne-scale detector nEXO on the way, will reach a sensitivity of 10²⁸ vr

Mahalo for your attention!

Backup slides

Experimental backgrounds and the importance of the detector's resolution

- Signal: 136 Xe $0v\beta\beta$'s signature mono-energetic peak at Q=2458 keV
- Main backgrounds :

¹³⁷Xe β decay with an endpoint energy of 4173 keV.

²⁰⁸TI from ²³²Th decay chain--gamma peak 2615 keV; Compton edge at 2382 keV.

²¹⁴Bi from ²³⁸U decay chain-- gamma at 2448 keV

Relative change in background rates expected in our 2σ region of interest as a function of the energy resolution:

• The energy resolution near the region of Q value is of utmost importance for the sensitivity of the experiment.

nEXO – the next generation tonne-scale LXe detector

- Width of the bands represent the uncertainties in nuclear matrix elements
- Assumes axial vector constant $g_A = 1.27$

Advantages of LXe TPCs

- Xenon isotopic enrichment is relatively safe and easy
- Can be recycled and purified in to new detectors
- No long lived radioactive isotopes of Xe
- Background can be significantly reduced through daughter Ba tagging
- Fair energy resolution

Resolution vs. time (multi-site events)

Phase I + Phase II likelihood profile

The negative log likelihood function used in profile-likelihood

$$-\ln L = \sum_{i} \left[\left(\mu_i^{SS} + \mu_i^{MS} \right) - \left(k_{obs,i}^{SS} \ln \mu_i^{SS} + k_{obs,i}^{MS} \ln \mu_i^{MS} \right) \right] + G_{const}$$

Radon activity

Uncertainties on nuclear matrix elements

Minimizing an energy functional with respect to local densities (but no n-p pairing)

QRPA involves small oscillations around a single determinant and quasi-particle states

Slater determinants restricted to a few single-particle shells

J.Engel and J. Menendez arXiv:1610.06548v2

NMEs

For phase space I take the values of Kotila and Iachello (PRC85,034316) 24.81×10^{-15} for Ca48, 2.363×10^{-15} (Ge), 14.22×10^{-15} (Te) and 14.58×10^{-15} for Xe136.

To convert it into the formula $1/T_{1/2} = G^{0nu} |M|^2 < m_{nu} > 2$ where $< m_{nu} > 1$ is in eV one needs to divide this by m_e^2 and multiply by g_A^4 . This gives $(G^{0nu})^{-1} = 4.05 \times 10^{24}$ (Ca), 4.24×10^{25} (Ge), 7.056×10^{24} (Te) and 6.88×10^{24} (Xe).

For matrix elements I take the following sources:

IBM, Barnea, Kotila, Iachello, PRC87, 014315: 2.33 (Ca), 6.07(Ge), 4.54(Te), 3.73(Xe) EDF, Rodriguez, Martinez-Pinedo, PRL105, 252503: 2.37(Ca), 4.60(Ge),

5.13(Te),4.20(Xe)

QRPA, Engel, Simkovic, Vogel, PRC89, 064308 : 0.61(Ca), 4.64(Ge), 3.65(Te), 2.02(Xe) NSM, Menendez et al., NPA818, 139: 0.85(Ca), 2.81(Ge), 2.65(Te), 2.19(Xe)

 $< m_{\text{nu}} > = 1/M_{\text{Xe}} \times 1/(G_{\text{Xe}})^{1/2} \times 1/(T_{1/2}^{\text{Xe}})^{1/2}$ where $1/G_{Xe}$ and $T_{1/2}$ are in 10^{24} units and $< m_{nu} > is$ in eV

Thus $\langle m_{nu} \rangle$ (eV)x(T_{1/2}^{Xe})^{1/2} = 0.703(IBM), 0.625(EDF), 1.29 (QRPA), 1.20(NSM) 10/20/18

25