

Direct dark matter detection with XENON1T

Alexander Fieguth, WWU Muenster, on behalf of the XENON collaboration

living.knowledge

Direct dark matter search

Recent results from XENON1T

DBD searches with XENON1T

Direct dark matter search

Recent results from XENON1T

DBD searches with XENON1T

BELIEVE IN DARK MATTER – THERE ARE GOOD REASONS TO DO SO..

observed

v (km/s)

and there is more...

Structure formation simulations (by Springel et al.)

WARNING:

This is a personal selection (there are plenty candidates out there, e.g. Axions, Sterile Neutrinos..)

Direct dark matter detection with XENON1T by Alexander Fieguth, DBD18

But what is the

nature of dark matter?

And how to detect it?

Indirect detection **Direct detection** e.g@lce@ $\chi + \bar{\chi} \rightarrow .. \rightarrow \gamma \gamma, \nu \bar{\nu},..$ $\chi + N \rightarrow \chi + N$

And how to detect it?

The expected recoil spectrum (spin-independent interaction)

* = simplified

Assumed standard halo model parameters with $\rho_0 = 0.3 \text{ GeV/cm}^3$ $v_0 = 220 \text{ km/s}$ $v_{esc} = 544 \text{ km/s}$

Exponentially decreasing rate spectrum modified by the nuclear form factor

Assumed standard halo model parameters with $\rho_0 = 0.3 \text{ GeV/cm}^3$ $v_0 = 220 \text{ km/s}$ $v_{esc} = 544 \text{ km/s}$

Exponentially decreasing rate spectrum modified by the nuclear form factor

Assumed standard			
halo model			
parameters with			
$ ho_0 = 0.3 { m GeV/cm^3}$			
$v_0 = 220 \text{ km/s}$			
v_{esc} = 544 km/s			

Exponentially decreasing rate spectrum modified by the nuclear form factor

See talk by W. Haxton today at 1:25 p.m. on effective theories of DDM

Other interaction channels?

Spin-dependent (SD) interaction between WIMPs and normal matter is already investigated

Other spin-independent interaction channels are possibly realized in nature

Phys.Rev.Lett. 118 (2017) no.25, 251301

see PRDD97 (2018) no.10, 103532 (Fieguth et al.) for a review on discrimination possibility in DDM detector

What do we measure?

Measure the cross section as a function of WIMP mass assuming an astrophysical model and nuclear interaction mechanism

WIMP mass

How to optimize the sensitivity?

Exposure

Backgrounds

Problem	External backgrounds (μ, γ)	Detector backgrounds (γ, n)	Intrinsic impurities or radioactive isotopes (β, γ, n)	Neutrinos, Coherent elastic neutrino nucleus scattering
Solution	Underground laboratories, shielding	Shielding, material screening	Purification	Directionality, Modulation, Inelastic channel

Backgrounds

Problem	External backgrounds (μ, γ)		Intrinsic impurities or radioactive isotopes (β , γ , n)	Neutrinos, Coherent elastic neutrino scattering
	PARTIC	LE IDENTIFICA	ATION /	
	D			
Solution	Underground laboratories, shielding		Purification	Directionality, Modulation, Inelastic channel

Direct dark matter detection with XENON1T by Alexander Fieguth, DBD18

Bubble Chambers (PICO, SIMPLE, PICASSO, COUPP,..)

- Use of superheated liquids C₃F₈, C₄F₁₀, CF₃I
- Measurement of acoustic and visual signals
- Excellent rejection of electron recoils
- Discrimination of nuclear recoils from α -particles
- PICO provides the best SD WIMP-proton limits of all experiments

Annual modulation (DAMA vs COSINE-100, SABRE, ANAIS,..)

DAMA/LIBRA-phase2 (1.13 ton \times yr) 1-3 keV Residuals (cpd/kg/keV) DAMA/LIBRA-phase2 ~250 kg (1.13 ton×yr) 0.04 -0.02 -0.04 -0.04 6250 6500 6750 7000 7250 7500 7750 8000 8250

Sodium iodide (Nal) experiments to search for annual modulation signal (no discrimination)

DAMA/LIBRA claims to have seen dark matter with >>5 σ -significance

NOT in agreement with various other targets

Need other Nal experiments to finally disprove

See talk by H. Lee at 11:30 a.m. on COSINE-100 results

Possible reason – unidentified background? e.g. radioactive argon (McKinsey arxiv:1803.101110)

Low-mass dark matter searches (CRESST, SUPERCDMS,..)

Low mass searches often trade-off between low threshold and low background

Probing down to Sub-GeV WIMP masses

Different technologies with cryogenic bolometers being the most developed

See talk by J. Orrell at 2:15 p.m. on SuperCDMS

Low-mass dark matter searches < 10 GeV (CRESST, SUPERCDMS,..)

<u>High-mass dark matter searches > 10 GeV</u>

Search above a few GeV is lead by liquid noble gas TPCs (for SI)

Argon and xenon with different advantages and disadvantages are used

Future upgrade of experiments with larger target masses are in construction "the battlefield": heavy WIMPs search

XMASS (LXe)

Various analyses beyond the standard dark matter interaction ongoing and published

See talk by K.Hiraide at 10:45 a.m.

Single phase liquid noble gas TPCs (DEAP,XMASS)

832 kg target mass 800 live days of data

Phys.Rev. D97 (2018) no.10, 102006

6 8 10 12 14 16 18 20

xpected ± 1a

Expected ± 20

DAMA/LIBRA (2013)

Energy[keV_]

Nuclear Recoil Energy [keVnr]

vents/da/,kg/ke/ 0.03 0.01 0 0 0.01

-0.02

-0.03

0

2 4

eleve

10 15 20 25 30

3600 kg target mass (max) First days of data analyzed Data taking ongoing

DEAP3600 (LAr)

9:45 a.m.

Phys. Rev. Lett. **121**, 071801

Dual phase TPCs - Argon (Darkside)

The DarkSide-50 detector

Taken from G.Giovanetti, KITP Apr. 18

S2-only analysis allows to push down threshold to below 1 keV

Phys. Rev. Lett. 121, 081307 (2018)

Pulse shape discrimination allows for effective particle identification

Using low radioactivity ("underground") argon to get rid of Ar-39

DarkSide-20k 20 tonne

For future 20 t argon detector distillation of Ar will be pursued in ARIA facility on Sardinia

See talk by J.Maricic at 4:00 p.m.

Dual phase TPCs - Xenon (LUX/LZ, PandaX, XENON)

LUX Total of 370 kg LXe 92 kg x yr exposure

See talk by S.Shaw at 11:05 a.m.

Various physics channels are checked beyond the standard SI dark matter analysis

PandaX-II

500 kg total LXe 148 kg x yr exposure

LZ

multi-ton (7 t) LXe **Operation** Apr. 2020

See talk by A. Manalaysay at 3:15 p.m.

PandaX-4T:

Multi ton detectors in construction multi-ton (~4 t) LXe

Assembly 2019-2020

Direct dark matter detection with XENON1T by Alexander Fieguth, DBD18

O N

Direct dark matter search

Recent results from XENON1T

DBD searches with XENON1T

XENON collaboration

 L WWU MÜNSTER		[See talk by S. Kazama at 3:35 p.m.	X E N Dark Matter	O N Project
XENON10	XENON100	XENON1T	XENONnT	DARWIN	
				DARWIN	
2005 - 2007	2008 - 2016	2012 - 2018	2019 - 2024	2020+	
25 kg	161 kg	3200 kg	~ 8400 kg	~ 50 000 kg	
~10 ⁻⁴³ cm ²	~10 ⁻⁴⁵ cm ²	~10 ⁻⁴⁷ cm ²	~10 ⁻⁴⁸ cm ²	~10 ⁻⁴⁹ cm ²	

_

WWU MÜNSTER

XENON1T @LNGS

Eur. Phys. J. C. (2017) 77:881

The XENON1T TPC

2 t xenon within the TPC (of 3.2 t total) ~ 1 m drift length ~ 1 m in diameter

Highly reflective PTFE walls

248 Low-background Hamamatsu R11410-21 3-inch PMTs EPJC 75 (2015) 11, 546

Calibration sources

Characterize detector

Internal ER sources Continuous spectrum No impact after a few days $(t_{1/2} = 10.6 h)$ Used for ER band determination

Neutron generator (+AmBe)

External NR sources On/Off cycle High neutron flux (2000 n/s) Used for NR band determination

Eur. Phys. J. C. (2017) 77, 275

Eur. Phys. J. C. (2017) 77, 358

Electronic recoil backgrounds

⁸⁵Kr and ²²²Rn (²¹⁴Pb)

- \rightarrow Leakage events from the low energy β -spectrum contaminate ROI for dark matter search
- ightarrow Material screening to avoid radon emanation
- \rightarrow Krypton reduction by cryogenic distillation

O N

Dark Matter Project

Nuclear recoil backgrounds

X E N O N Dark Matter Project

 10^{0} Junct V pin Counts / pin Counts /

3.75 3.50 3.25 3.00 3.00 3.00

log 2.75 2.50 2.25 2.25 2.20 10 2.00

1.75

Other backgrounds

Surface events

- ²¹⁰Pb from ²²²Rn chain plates out on PTFE surfaces.
- S2 signal losses when ²¹⁰Pb β-decay happens on surface.
 → leakage into signal region
- Data driven model based on ²¹⁰Po surface control samples.

Accidental coincidence

- Lone-S1 signals may accidentally coincide (AC) with lone-S2 signals. → fake interactions
- Empirical model verified with ²²⁰Rn calibration data and background sidebands.

- Detection efficiency dominated by PMT 3-fold coincidence requirement
- Selection efficiencies estimated from control or MC data samples
- Search region defined within 3-70 PE in S1

Direct dark matter detection with XENON1T by Alexander Fieguth, DBD18

Signal efficiency

Data set (one tonne x year exposure)

The result presented today combines **both** science runs for 278.8 days total livetime.

→ 1 tonne x year exposure given 1.3 tonne fiducial volume.

Signal region **blinded** for SR1, **re-blinded** for SR0 + **salted**.

Direct dark matter detection with XENON1T by Alexander Fieguth, DBD18

ark Matter Project

Electronic Recoils

-Neutron generator

Nuclear Recoils

~99.7% ER rejection in NR reference region [NR median,- 2σ]

Background predictions – core volume

WWU MÜNSTER

<u>Classical box counting</u> with hard discrimination cut just for illustration!

Background predictions – full volume

Instead of using a hard discrimination criteria, a likelihood is given depending on the position in discrimination space

Background predictions – full volume

[4.9, 40.9] keVnr and [1.4, 10.6] keVee.

Analysis space before unblinding

Direct dark matter detection with XENON1T by Alexander Fieguth, DBD18

O N

XEN

Dark Matter Project

Direct dark matter detection with XENON1T by Alexander Fieguth, DBD18

47

Results: Unblind + Desalt!

Pie charts

Events passing all selection criteria are shown as pie charts

representing the relative PDF from each component for the best-fit model for 200 GeV WIMP (σ_{si} =4.7 · 10⁻⁴⁷ cm²).

Distribution in the detector

WWU MÜNSTER

Core volume (0.65 t)

Distinguish WIMPs over neutron background

Final result of one tonne x year of XENON1T

Sensitivity

7 times improved compared to previous generation experiments (LUX, PANDAX-II)

Limit

~1 σ under-fluctuation for masses $\lesssim 8 \text{ GeV/c}^2$ while over-fluctuation at higher masses

<u>Minimum</u>

 $\sigma_{sl} < 4.1 \cdot 10^{-47} \text{ cm}^2$ at 30 GeV/c²

Phys.Rev.Lett. 121 (2018) no.11, 111302

Direct dark matter search

Recent results from XENON1T

DBD searches with XENON1T